

UNIVERSIDAD NACIONAL HERMILIO VALDIZÁN

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

"APLICACIÓN DE LOS CONCEPTOS DE LA FILOSOFÍA LEAN CONSTRUCTION PARA MEJORAR LA PRODUCTIVIDAD DE PAVIMENTOS RÍGIDOS"

Tesista: CARLOS AUGUSTO ORTEGA URDANIVIA

Para optar el Título Profesional de:
INGENIERO CIVIL

Huánuco-Perú

2017

ORTEGA URDANIVIA, Carlos Augusto
Todos los derechos son reservados por el autor
"APLICACIÓN DE LOS CONCEPTOS DE LA FILOSOFÍA LEAN
CONSTRUCTION PARA MEJORAR LA PRODUCTIVIDAD DE PAVIMENTOS
RÍGIDOS"

DEDICATORIA

A mis padres por su amor, paciencia y consejos que ayudaron a realizarme profesionalmente y convertirme en una persona de bien que pueda servir a la sociedad.

AGRADECIMIENTO

Al Ingeniero Jesús Ascencio por su apoyo incondicional en el desarrollo del presente trabajo.

V

RESUMEN

El sector de la construcción viene creciendo significativamente en el Perú debido al crecimiento económico de los últimos años y al déficit de infraestructura. Sin embargo, la mayoría de empresas no le da importancia a la gestión de la ejecución de las obras, por el cual vemos procedimientos constructivos ineficientes lo que finalmente nos limita como país a crecer con mayor velocidad. Tenemos bajos niveles de productividad y también problemas de la seguridad laboral del sector. Estos indicadores nos permiten visualizar la escasa evolución que ha tenido el sector construcción en el Perú a pesar de estar en una época de apogeo económico.

Para poder mejorar estos niveles de productividad ya existen diversos sistemas de programación y control de obra como el Sistema Last Planner (El ultimo Planificador), el presente trabajo se centrará en adaptar algunas metodologías y principios de dicho sistema para aplicarlo a una obra de pavimento rígido, analizar los resultados obtenidos luego compararlo con resultados de obras realizadas mediante la metodología tradicional de construcción en el Perú.

vi

SUMMARY

The construction sector has grown significantly in Peru due to economic growth in recent years and the infrastructure deficit. However, most companies do not give importance to the management of the execution of works, by which we see inefficient constructive procedures which ultimately limits us as a country to grow with greater speed. We have low levels of productivity and also labor safety problems in the sector. These indicators allow us to visualize the poor evolution that the construction sector has had in Peru despite being in an era of economic heyday.

In order to be able to improve these levels of productivity already exist diverse systems of programming and control of work like Last Planner System (the last Planner), the present work will focus on adapting some methodologies and principles of this system to apply it to a work of rigid pavement, Analyze the results obtained then compare it with results of works carried out using traditional construction methodology in Peru.

INTRODUCCIÓN

En la presente tesis se realiza la aplicación de algunos conceptos de la filosofía Lean Construction en el Proyecto "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI", el principal concepto aplicado en el presente trabajo es del Sistema del Ultimo Planificador o Last Planner System, que es una herramienta para la planificación y control de obra, dicha herramienta es aplicada en obras de edificaciones el objetivo de la presente tesis es adaptarla a una obra de lineal como es la construcción de pistas y veredas.

En el primer capítulo se describe la parte metodológica del trabajo de investigación, se describe los antecedentes de la investigación, formulación del problema, se establecen los objetivos generales y específicos que se pretende lograr con la investigación.

En el segundo capítulo se describen de manera detallada: términos frecuentemente empleados en la investigación, el significado d Filosofía Lean y su historia.

En el tercer capítulo se expone el proyecto estudiado en la presente tesis (trabajos a realizar, monto, plazo, cronograma, etc.)

En el cuarto capítulo se realiza un análisis más profundo del Lean Construction con énfasis en el Sistema del Ultimo Planificador y la adaptación que se realiza a obras lineales

En el quinto y último capítulo se presentan las conclusiones del trabajo de investigación y algunas recomendaciones sobre el tema.

INDICE

INTRODUCCIÓN	7
INDICE DE FIGURAS	13
INDICE DE TABLAS	16
INDICE DE GRÁFICOS	17
CAPÍTULO I	18
1. MARCO TEÓRICO	19
1.1 Planteamiento del problema	19
1.1.1 Antecedentes y fundamentación del problema	19
1.1.2 Fundamentación del Problema	23
1.1.3 Formulación del problema	25
1.1.3.1 Formulación del problema general	25
1.1.3.1 Formulación de los problemas específicos	26
1.2 Objetivos	26
1.2.1 Objetivo general	26
1.2.2 Objetivos específicos	26
1.3 Justificación e importancia	27
1.4 Limitaciones	29
1.5 Hipótesis, variables, indicadores y definiciones operacionales	29
1.5.1 Hipótesis	29
1.5.1.1 Hipótesis general	29
1.5.1.2 Hipótesis específicas	29
1.5.2 Sistema de variables – dimensiones e indicadores	30

1.5.2.1 Variable independiente	30
1.5.2.2 Variable dependiente	30
1.6 Base Teórica	31
1.6.1 Lean Construction	31
1.6.2 Sistema Last Planner (El Último Planificador)	37
1.6.3 Método CPM o Ruta Crítica	38
1.6.4 Método PERT	39
1.6.5 Pavimentos	40
1.6.6 Carta Balance	41
1.6.7 Productividad en la Construcción	42
1.7 Marco Situacional	44
1.8 Situación Actual de la Construcción en el Perú y Latin	oamérica
(Rodríguez, 2012)	45
1.9 Definición de términos básicos	48
1.10 Matriz de Consistencia	51
CAPÍTULO II	53
2. MARCO METODOLÓGICO	54
2.1 Tipo y nivel de investigación	54
2.1.1 Tipo de investigación	54
2.1.1 Nivel de investigación	54
2.2 UNIVESO/POBLACIÓN Y MUESTRA	55
CARÍTULO III	E /

3.	RESUMEN EJECUTIVO DEL PROYECTO.	57
	3.1 CONSIDERACIONES GENERALES	. 57
	3.2 DESCRIPCIÓN DEL PROYECTO	. 60
	3.3 DISEÑO GEOMETRICO DE LA VÍA	. 69
	3.4 PRESUPUESTO DE OBRA	.71
	3.5 PLAZO Y MODALIDAD DE EJECUCIÓN	.71
	3.6 FINANCIAMIENTO Y COFINANCIAMIENTO	.71
	3.7 TRABAJOS A REALIZAR	.72
	3.8 BENEFICIOS ESPERADOS	.77
C	APÍTULO IV	78
4.	IMPLEMENTACIÓN LEAN Y APLICACIÓN DEL SISTEMA LAST PLANNER	79
	4.1 CONSIDERACIONES GENERALES	.79
	4.1.1 POR QUÉ MUDARSE DE LO CONVENCIONAL	. 79
	4.1.2 DETECCIÓN DE PERDIDAS EN OBRA	. 83
	4.2 EL CONTROL DE PRODUCCIÓN: SISTEMA LAST PLANNER	. 88
	4.2.1 PROGRAMACIÓN MAESTRA	.93
	4.2.2 PROGRAMACIÓN POR FASES	.96
	4.2.3 PROGRAMACIÓN INTERMEDIA: Lookahead	.99
	4.2.3.1 LA PROGRAMACIÓN LINEAL: TRENES DE TRABAJO	Υ
	SECTORIZACIÓN1	107
	4.2.4 PROGRAMACIÓN SEMANAL	110
	4.2.4.1 PORCENTAJE DE PLAN COMPLETADO (PPC)	114
	4.2.5 PROGRAMACIÓN DIARIA	115

4.3 OPTIMIZACIÓN DE PROCESOS	118
CAPÍTULO V	127
5. CONCLUSIONES	128
BIBLIOGRAFÍA	132
ANEXOS	135

INDICE DE FIGURAS

Figura 1: Perdidas en la construcción31
Figura 2: Soluciones a cada perdida en la construcción
Figura 3: Muestreo del Trabajo en diferentes países de Sudamérica 33
Figura 4: Modelo de Producción Tradicional Vs. Modelo de Producción
Lean36
Figura 5: Eficiencia y Eficacia44
Figura 6: Detalle de Pavimento del Proyecto62
Figura 7: Detalle de Veredas del Proyecto63
Figura 8: Sección Transversal típica del Proyecto64
Figura 9: Detalle de Canaleta del Proyecto64
Figura 10: Vista Isométrica de Canaleta del Proyecto65
Figura 11: Tipos de Muros de Contención del Proyecto66
Figura 12: Plano General del Proyecto70
Figura 13: Demolición de Canaleta mal ejecutada84
Figura 14: Transporte de Materiales ineficiente 85

Figura 15: Trabajo de Amarrado de Fierros86
Figura 16: Esperas debido a la falta de Instrucciones
Figura 17: Filosofía de Planificación Tradicional Vs. Filosofía de
Planificación Lean89
Figura 18: Etapas del Sistema Last Planner91
Figura 19: Esquema del procedimiento del Sistema Last Planner 93
Figura 20: Planificación Maestra95
Figura 21: Programación por Hitos96
Figura 22: Planificación Intermedia o Lookahead de Obra 106
Figura 23: Sectorización ejemplo de un edificación de 4 pisos 108
Figura 24: Trenes de Trabajo ejemplo de Edificación de 4 pisos 109
Figura 25: Modelo de Programación Semanal112
Figura 26: Programación Semanal de la Obra en Estudio113
Figura 27: Programación diaria de la Obra en Estudio 118
Figura 28: Distribución de Trabajos de la Partida Vaciado de Concreto
1 71

Figura 29: Trabajadores de la cuadrilla estudiada1	120
Figura 30: Procedimiento de vaciado de losa de pavimento	125
Figura 31: Disposición de obreros después de la optimización	126
Figura 32: Vaciado por franjas de losa de pavimento	126

INDICE DE TABLAS

Tabla 1: Variables en estudio30
Tabla 2: Estimado de desperdicio en obras de edificación34
Tabla 3: Longitud de calles del Proyecto61
Tabla 4: Área de Pavimento del Proyecto61
Tabla 5: Presupuesto de Obra71
Tabla 6: Partidas a Ejecutar en el Proyecto72
Tabla 7: Diferenciación entre la producción convencional y la
producción sin pérdidas en la construcción80
Tabla 8: Duración de las Fases de Pavimentos y Veredas Martillos de
Concreto
Tabla 9: Duración de las Fases de Muros de Contención y Obras de
Drenaje
Tabla 10: Partidas de la Fase de Muros de Contención101
Tabla 11: Partidas de la Fase Pavimentos
Tabla 12: Partidas de la Fase de Obras de Drenaje104
Tabla 13: Partidas de la Fase Veredas y Martillos 105

INDICE DE GRÁFICOS

Gráfico 1: PPC de la Obra en estudio114
Gráfico 2: Causas de Incumpliento en la Obra en estudio
Gráfico 3: Porcentajes de ocupación del tiempo de la Partida
Estudiada121
Gráfico 4: Trabajo Productivo de la Partida Estudiada121
Gráfico 5: Trabajo Contributorio de la Partida Estudiada
Gráfico 6: Trabajo No Contributorio de la Partida Estudiada122
Gráfico 7: Porcentaje de ocupación del tiempo de la cuadrilla 123

CAPÍTULO I

1. MARCO TEÓRICO

1.1 Planteamiento del problema

1.1.1 Antecedentes y fundamentación del problema

NIVEL INTERNACIONAL

AUTOR: LAURI KOSKELA

TITULO: APLICACIÓN DE LA NUEVA FILOSOFÍA DE LA PRODUCCIÓN

A LA CONSTRUCCIÓN.

CONCLUSIONES

La actitud hacia la nueva filosofía de la producción en la construcción da lugar a una paradoja: Contiene una

promesa de enormes posibilidades de mejora y de una

solución de los problemas crónicos de la construcción; sin

embargo, el interés tanto ha sido, en el mejor de los casos,

tibia.

Las empresas pioneras en la construcción muestran que hay

un conjunto de principios, métodos y técnicas que merecen

ser comprendidos y adoptar en la construcción. Constituyen

un cambio de paradigma, que será un largo proceso de

20

UNIVERSIDAD NACIONAL HERMILIO VALDIZÁN E.A.P. DE INGENIERÍA CIVIL

transformación tanto de la práctica como de la teoría de la

ingeniería de administración. El impulso de este cambio de

paradigma sólo ha comenzado a reunirse. Esta situación

brinda oportunidades para que los obtengas tempranos

beneficios y sean competitivos.

AUTOR: HERMAN GLENN BALLARD

TITULO: EL ULTIMO PLANIFICADOR, SISTEMA DE CONTROL DE LA

PRODUCCIÓN

CONCLUSIONES

El sistema de control de producción "Last Planner",

mejorado a través de los estudios incluido en esta tesis, ha

demostrado ser eficaz para lograr y mantener el plan de

fiabilidad por encima del nivel del 90%. La aplicabilidad y

eficacia del sistema de diseño del "Last Planner" aún está

por determinar, se sugiere un mayor desarrollo del sistema

"Last Planner". Con respecto a la definición de actividades,

asignaciones conjuntas de proveedores / clientes y análisis

de razones. Además, la investigación es necesaria para

cuantificar y comprender los beneficios de un mayor plan

21

UNIVERSIDAD NACIONAL HERMILIO VALDIZÁN E.A.P. DE INGENIERÍA CIVIL

de confiabilidad que incluyan la seguridad, calidad tiempo

y costo.

NIVEL NACIONAL

AUTOR: BRAHIAN HUGO ROMÁN CABRERA

TITULO: APLICACIÓN DE LAS METODOLOGÍAS CONSTRUCCIÓN SIN

PÉRDIDAS E INNOVACIÓN TECNOLOGICA PARA LA MEJORA DE LA

PRODUCTIVIDAD EN PROCESOS DE PAVIMENTACIÓN

CONCLUSIONES

Es posible complementar el sistema de gestión de

proyectos tradicional (PMI) con las metodologías

construcción pérdidas (Lean Construction) sin

Innovación Tecnológica mediante la identificación del

proceso con los índices de costo, plazo y calidad más

desfavorables (proceso crítico o rector)

Las metodologías Construcción sin Pérdidas e Innovación

Tecnológica se complementan, ya que la primera permite

mejorar el planeamiento a mediano plazo, establecer una

línea de producción balanceada y asegurar la calidad del

entregable mientras que la segunda posibilita un gran incremento en la eficiencia del trabajo al incorporar nuevas tecnologías.

 La herramienta Mapa de Flujo de Valor (MFV) es adecuada para la identificación de pérdidas en procesos constructivos repetitivos (caso de capas granulares de pavimentos) y para la posterior implementación y seguimiento de planes de mejora

NIVEL LOCAL

AUTOR: CARLOS ADRIAN ORTIZ CHUJUTALLI, RUBÉN HOMERO HUAYNATE TITO

TITULO: METODOLOGÍA BIM APLICADA AL PROYECTO DE 'MEJORAMIENTO DE LOS SERVICIOS ACADÉMICOS DE LA FACULTAD DE CIENCIAS ECONÓMICAS DE LA UNIVERSIDAD NACIONAL HERMILIO VALDIZÁN' PARA GESTIONAR INCOMPATIBILIDADES- HUÁNUCO 2015

CONCLUSIONES

 La aplicación de la metodología BIM permitió una perfecta coordinación entre especialidades debido a que cada participante trabaja sobre un modelo local que alimenta a un modelo central, por esta razón cualquier cambio o modificación que se realice en un modelo local es actualizado y puede ser visto por cualquiera de los modeladores en tiempo real, siempre y cuando se tenga una conexión a internet; asimismo, si la modificación desea hacerse en otra especialidad, es necesaria la aprobación del modelador de la misma. Esto permitió que durante el modelado nosotros nos anticipemos a los problemas e interferencias que iban a existir.

• La aplicación de la Metodología BIM al control de obra, brinda la facultad de poder emplear el modelo para alimentarlo de la información necesaria y requerida de manera independiente; es decir, el supervisor, el residente y la entidad-así como su respectivo equipo de trabajopueden manejar datos que quieren ver en el modelo para tomar las decisiones necesarias.

1.1.2 Fundamentación del Problema

La mejora de la productividad en una obra es un objetivo estratégico al que deben aspirar todos los que están involucrados en el proyecto

de construcción civil, pues de esta manera se optimiza los recursos a utilizar. Sin embargo, muchas veces observamos en obra que los responsables no le dan la importancia debida a la productividad dejando a cargo a personas con poco conocimiento en producción como son los maestros de obra teniendo como resultado bajos niveles de productividad, un estudio realizado por el Profesor Virgilio Ghio de la Pontificia Universidad Católica en el 2001 concluyó que los obreros en proyectos de edificación sólo realizan trabajo productivo en el 28% del tiempo total, lo cual implica que se está desperdiciando casi las tres cuartas partes del tiempo que se dispone de la mano de obra. Los proyectos de infraestructura como túneles, carreteras o centrales hidroeléctricas han sido poco estudiados en estos temas y es fácil inferir que sus niveles de productividad serán aun menores debido a la mayor variabilidad a la que se encuentran sometidas, están inherentes particularidades son comúnmente utilizadas como excusas por los responsables de los proyectos para justificar deficiencias en gestión y uso de recursos argumentando que estos no tienen solución (Nam y Tatum, 1998).

En el ámbito manufacturero ha sido posible incrementar los niveles de productividad mediante un nivel organizativo integral a través de la

implementación como los ciclos de mejora continua y el Sistema Justo a Tiempo (Just in Time) – filosofías pertenecientes al sistema de producción de TOYOTA-. En la construcción, los esfuerzos por incrementar la productividad han seguido el ejemplo del sector industrial. Muchas empresas constructoras han optado por incluir los principios de la mejora continua adaptados a la construcción (Lean Construction) dentro de sus organizaciones con buenos resultados, en su mayoría en proyectos verticales.

Por lo tanto, es necesario proponer una estrategia general que permita la mejora de la productividad en la construcción. En la presente tesis se estudiará la productividad en la construcción de pavimentos rígidos pues su naturaleza lineal y repetitiva abre una oportunidad para su modelamiento como proceso industrial.

1.1.3 Formulación del problema

1.1.3.1 Formulación del problema general

¿La aplicación de la metodología Lean Construction en obras de pavimentos rígidos mejorará la productividad en los procesos de ejecución, mediante el Sistema Last Planner?

1.1.3.1 Formulación de los problemas específicos

- ¿De qué manera la aplicación de la metodología Lean
 Construction mejorara la productividad de la construcción de obras de pavimentos rígidos?
- ¿La adaptación del Sistema Last Planner facilitará el control de la productividad en los procesos de ejecución de obras de pavimento rígido?
- ¿Mejorará la productividad en la construcción de pavimentos rígidos con la aplicación de la Filosofía Lean Construction?

1.2 Objetivos

1.2.1 Objetivo general

Aplicar la metodología Lean Construction en los procesos de ejecución de obras de pavimentos rígidos mediante el uso del Sistema Last Planner con la finalidad de mejorar la productividad.

1.2.2 Objetivos específicos

 Demostrar como la aplicación de la metodología Lean
 Construction aumentará la productividad de la construcción de obras de pavimentos rígidos.

- Adaptar el Sistema Last Planner para facilitar el control de la productividad en los procesos de ejecución de pavimentos rígidos.
- Comparar los enfoques del Lean Construction y el enfoque del PMI (Sistema Tradicional).

1.3 Justificación e importancia

El propósito del presente trabajo es dar a conocer a los profesionales de la construcción que mediante la aplicación de algunos conceptos del Lean Construction se mejorara la productividad en sus obras, que como consecuencia se obtendrán mayores utilidades, menores tiempos de ejecución de obra y también la reducción de riesgos de accidentes en obra.

Dada la importancia que tiene la planificación y el control en los proyectos se entiende la necesidad de la aplicación de un sistema de gestión que nos permita maximizar el valor del producto y minimizar el desperdicio.

Generalmente en las obras se utiliza el diagrama Gantt para la planificación, pero esta herramienta no nos permite indicar las relaciones existentes entre partidas por lo cual solo sirve para

realizar un seguimiento, por lo general, esta programación siempre está atrasada, por lo que no cumple su función de planificación (previa al trabajo) y en el mejor de los casos solo sirve para presentar a la supervisión o a la entidad. De allí nace la necesidad de tener una herramienta que muestre las interacciones que existen entre partidas y que tenga un horizonte de planificación más corta para tener confiablidad en nuestra planificación. Dicha herramienta es el Last Planner System que la aplicaremos en una obra de pavimentos rígidos para mejorar la productividad de los procesos constructivos de dicha obra.

Mendoza P. (2001) dijo "Todo lo que se hace se puede medir, sólo si se mide se puede controlar, sólo si se controla se puede dirigir y sólo si se dirige se puede mejorar" esta frase resume la importancia del trabajo que se realizará, se empezará por MEDIR el trabajo realizado mediante cartas balance y medición de rendimientos en obra para luego empezar a DIRIGIR y CONTROLAR mediante la aplicación del Last Planner System y por ultimo MEJORAR la productividad que es nuestro objetivo principal.

1.4 Limitaciones

 Poca cooperación por parte de las instituciones públicas (municipios y gobierno regional) y las empresas privadas (constructoras, consultoras y de supervisión) para suministrar información y permitir la toma de datos en obra.

 Poca información de casos similares (obras de pavimentos rígidos).

1.5 Hipótesis, variables, indicadores y definiciones operacionales

1.5.1 Hipótesis

1.5.1.1 Hipótesis general

La aplicación de la metodología Lean Construction mediante el sistema Last Planner a una obra de pavimento rígido mejorará la productividad.

1.5.1.2 Hipótesis específicas

 La aplicación de la metodología Lean Construction aumenta la productividad evitando las paras en el flujo de producción en las obras de pavimentos rígidos.

- La adaptación del Sistema Last Planner permite controlar los procesos de producción en la ejecución de pavimentos rígidos.
- La aplicación de la Filosofía Lean Construction permite obtener mejores resultados en productividad que el enfoque PMI (Sistema Tradicional)

1.5.2 Sistema de variables – dimensiones e indicadores

1.5.2.1 Variable independiente

Sistema Last Planner.

1.5.2.2 Variable dependiente

Productividad de la Obra.

Tabla 1: Variables en estudio

VARIBLES INDEPENDIENTES	DIMENSIONES	SUB DIMENSIONES	INDICADORES	INSTRUMENTO
Sistema Last Planner	Programación de Obra	Sistema de Programación	PPC(Porcentaje de Plan Cumplido)	- Plan Maestro
		. regramation	, ran Campilal)	- Lookahead
				- Plan Semanal
				- Plan Diario
VARIBLES DEPENDIENTES	DIMENSIONES	SUB DIMENSIONES	INDICADORES	INSTRUMENTO
Productividad de la Obra	Productividad	Productividad en Obra	Rendimiento	- Mediciones de
de la Obia		CIT Obla		Rendimiento.

Fuente: Propia

1.6 Base Teórica

1.6.1 Lean Construction

"Lean" significa sin grasa, fino, delgado, y "construction", es Construcción.

El Lean Construction viene a ser la construcción fina, sin grasa, es decir construcción sin perdidas.

Una perdida es toda actividad que tiene un costo, pero no agrega valor al producto terminado. A continuación, se muestra los 7 desperdicios en la construcción

Figura 1: Perdidas en la construcción

Fuente: Koskela, L. (1992). Application of the New Production Philosophy to Construction. Technical Report #72. Stanford, California.

El Lean Construction es una herramienta de mejoramiento de la Productividad y Calidad de las construcciones, es un método manufacturero o de fabricación con políticas como el Justo a Tiempo (entregas oportunas de los subcontratistas y proveedores), es una filosofía de Administración general. Se enfoca en la optimización de las operaciones productivas de manera coordinada teniendo siempre un enfoque hacia la eliminación de pérdidas y creación de valor hacia el cliente, se muestra las herramientas para eliminar cada perdida anteriormente mostrada.

7. SISTEMA "JALAR" - PRODUC-7. SOBRE-PRODUCCIÓN CIÓN UNITARIA 6. SISTEMAS DE ASEGURAMIEN-6. MALA CALIDAD / DEFECTOS TO DE CALIDAD 5. MÉTODOS DE TRABAJO 5. ESTUDIOS DE TIEMPOS Y MO-INADECUADOS **VIMIENTOS** 4. SISTEMA JUSTO A TIEMPO / AD-**INVETARIOS EXCESIVOS** MINISTACIÓN DE INVENTARIOS 3. ANÁLISIS Y DISEÑO DE PRO-3. PROCESOS DEFICIENTES **CESOS CONSTRUCTIVOS** 2. TRANSPORTE / MANEJO DE 2. LAYOUT DE OBRA / ORGANI-**MATERIALES** ZACIÓN DE ALMACENES 1. COORDINACIÓN EN OBRA/ CA-**ESPERAS / DEMORAS PACITACIÓN A CONTRATISTAS**

Figura 2: Soluciones a cada perdida en la construcción

Fuente: Koskela, L. (1992). Application of the New Production Philosophy to Construction. Technical Report #72. Stanford, California.

El enfoque hacia la eliminación de perdidas es muy importante, porque los niveles en la construcción son muy altos. Diversos muestreos de los tipos de trabajo en la construcción, los cuales son clasificados en Trabajo Productivo(TP), Contributorio (TC) y No Contributorio (TNC), nos dicen que tenemos alrededor de la tercera parte de la producción en las obras de construcción está compuesta por pérdidas o desperdicios.

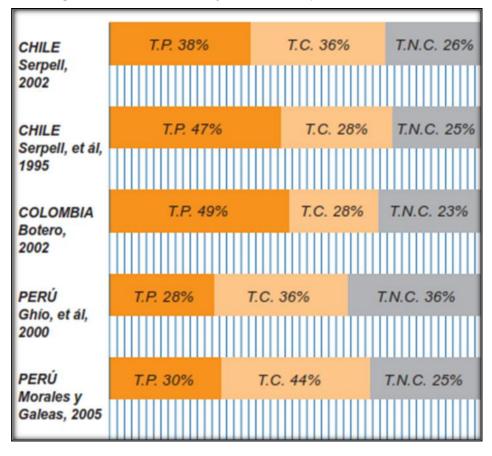


Figura 3: Muestreo del Trabajo en diferentes países de Sudamérica

Fuente: Orihuela, P. (2011). El Lean Construction en el Perú. Construcción Integral, 7-9.

Picchi F. (1993) plantea que una obra de edificación normal el porcentaje de pérdidas por torre ejecutada es del 30%, en la siguiente tabla se evidencia el estimado desperdicio en obra mediante el modelo tradicional o modelo de transformación.

Tabla 2: Estimado de desperdicio en obras de edificación

ESTIMADO DE DESPERDICIO EN OBRAS DE EDIFICACIÓN		
ĺtem	Descripción	%
Restos de Materiales	Restos de morteroResto de ladrilloResto de maderaLimpiezaRetirada de material	5%
Espesores adicionales de mortero	Tarrajeo de techosTarrajeo de paredes internasTajarreo de paredes externasContrapisos	5%
Dosificaciones no optimizadas	 Concreto Mortero de tarrajeo de techos Mortero de tarrajeo de paredes Mortero de contrapisos Mortero de revestimiento 	2%
Reparaciones y Re-trabajos	RepintadoRetoquesCorrección de otros servicios	2%
Proyectos no optimizados	ArquitecturaEstructurasInstalaciones sanitariasInstalaciones eléctricas	6%
Pérdidas de productividad debidas a problema de calidad	- Parada y operaciones adicionales por falta de calidad de materiales y servicios anteriores	3.5%
Costos debidos a atrasos	- Pérdidas financieras por atrasos de las obras y costos adicionales de administración, equipos y multas	1.5%
Costos en obras entregadas	- Reparo de patologías ocurridas después de la entrega de obra	5%
	TOTAL	30%

Fuente: Porras Díaz, H., Sánchez Rivera, O. G., & Galvis Guerra, J. A. (2014). Filosofía Lean Construction para la gestión de proyectos de construcción: una revisón actual. AVANCES Investigación en Ingeniería, 32-53.

Para una obra lineal como es el caso del presente trabajo no se cuenta con información del estimado de desperdicios que se obtenga, pero en el caso de edificaciones sabemos que es el 30% es como si tendríamos un proyecto de 4 torres y la cuarta torre se podría realizar solo con los desperdicios de las otras 3 torres.

La programación clásica tiene en cuenta sólo la conversión o transformación de materias primas o insumos en Productos no teniendo en cuenta los flujos o desplazamientos sean verticales u horizontales que tienen que recorrer los materiales, la mano de obra y equipo. En la siguiente imagen se observa las diferencias entre la producción tradicional y la producción lean.

La Programación tradicional tiene actividades rígidas, con holguras y con una sola ruta crítica (diagrama de Gantt), el objetivo del Lean Construction es convertir dichas actividades en críticas haciendo que la holgura sea cero, pero teniendo en cuenta los flujos, los mismos que deben ser reducidos al mínimo con el mejoramiento continuo de la disposición de planta (layout plant) que repercute en una mejora de la producción y por ende de la Productividad.

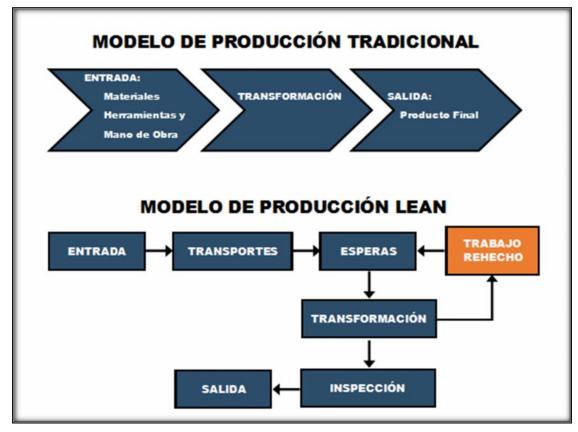


Figura 4: Modelo de Producción Tradicional Vs. Modelo de Producción Lean

Fuente: Porras Díaz, H., Sánchez Rivera, O. G., & Galvis Guerra, J. A. (2014). Filosofía Lean Construction para la gestión de proyectos de construcción: una revisón actual. AVANCES Investigación en Ingeniería, 32-53.

Los 11 principios del Lean Construction son:

- 1. Eliminar actividades que no agregan valor.
- 2. Incremento del valor del producto.
- 3. Reducción de la variabilidad.
- 4. Reducción del tiempo de ciclo.
- 5. Simplificación de procesos.

- 6. Incremento de flexibilidad de la producción.
- 7. Transparencia del proceso.
- 8. Enfoque del control al proceso completo.
- 9. Mejora continua del proceso.
- 10. Balance de mejoramiento del flujo con mejoramiento de la conversión.
- 11. Benchmarking.

1.6.2 Sistema Last Planner (El Último Planificador)

Sistema de control que mejora sustancialmente el cumplimiento de las actividades programadas y la correcta utilización de recursos en los proyectos de construcción).

Fue desarrollada por los ingenieros Ballard y Howell (2000), fundadores del Lean Construction Institute (LCI). Su principio básico se basa en aumentar el cumplimiento de las actividades mediante la disminución de la incertidumbre asociada a la planificación.

Este sistema parte de la tradicional programación maestra de toda obra, la cual usa como un referente de hitos; luego baja a una

programación por fases, por ejemplo: excavaciones, cimentaciones, casco, instalaciones eléctricas, instalaciones sanitarias, etc. (esto es lo que DEBERÍA hacerse); para luego entrar a realiza una programación de 4 a 6 semanas analizando lo que realmente se PUEDE hacer, denominada Lookahead, donde se aplica un análisis de restricciones; y finalmente, recién se para a una programación semana (lo que finalmente se HARÁ), la cual será más confiable por haber sido liberada de sus restricciones. Una vez realizado los trabajos (lo que se HIZO), los planificadores son retroalimentados con el Porcentaje de Plan Cumplido (PPC) y con las Razones de No Cumplimiento (RNC).

1.6.3 Método CPM o Ruta Crítica

El método CPM o Ruta Crítica (equivalente a las siglas en inglés Critical Path Mehod) es frecuentemente utilizado en el desarrollo y control de proyectos. El objetivo principal es determinar la duración de un proyecto, entendiendo éste como una secuencia de actividades relacionadas entre sí, donde cada una de las actividades tiene una duración estimada.

En este sentido supuesto de CPM es que las actividades y sus tiempos de duración son conocidos, es decir, no existe incertidumbre. Este supuesto simplificador hace que esta metodología sea fácil de utilizar

39

y en la medida que se quiera ver el impacto de la incertidumbre en la duración de un proyecto, se puede utilizar un método complementario como lo es PERT.

Una ruta es una trayectoria desde el inicio hasta el final de un proyecto.

En este sentido, la longitud de la ruta crítica es igual a la de la trayectoria más grande del proyecto. Por lo que se concluye que la duración de un proyecto es igual a la ruta crítica.

1.6.4 Método PERT

El método PERT es una técnica que le permite dirigir la programación de su proyecto. El método PERT consiste en la representación gráfica de una red de tareas, que, cuando se colocan en una cadena, permiten alcanzar los objetivos de un proyecto.

Fue diseñada por la marina de los Estados Unidos para permitir la coordinación del trabajo de miles de personas que tenían que construir misiles con cabezas nucleares POLARIS.

En su etapa preliminar, el método PERT incluye lo siguiente:

- Desglose preciso del proyecto en tareas,
- Cálculo de la duración de cada tarea

• La designación de un director del proyecto que se haga cargo de asegurar la supervisión de dicho proyecto, de informar, en caso de ser necesario, y de tomar decisiones en caso de que existan variaciones de las proyecciones.

1.6.5 Pavimentos

Es el componente fundamental de la infraestructura vial (caminos, carreteras, aeropuertos) la estructura de un pavimento está formada por capas inferiores de material granular, que pueden estar en su estado natural o tratadas previamente con aglomerantes y/o agentes estabilizadores y una capa superficial (de rodadura).

Existen numerosos criterios para la clasificación de pavimentos, ya sea por su tiempo de vida útil, por su estructura y por el tipo de transito que soportará, sin embargo la clasificación general de pavimentos depende de la manera en que se trasmiten la cargas al terreno desde su capa más superficial, esto varía en función del tipo de material de dicha paca, si está compuesto de cemento Portland se denominará Pavimento de Concreto Hidráulico, en cambio si fuera más conveniente la utilización de materiales bituminosos y granulares será del tipo Asfáltico. En el presente estudio se profundizará dentro del

41

UNIVERSIDAD NACIONAL HERMILIO VALDIZÁN E.A.P. DE INGENIERÍA CIVIL

ámbito de Pavimentos de Concreto Hidráulico o también llamados

Pavimentos Rígidos.

1.6.6 Carta Balance

La carta balance es una herramienta Lean que permite ver la

distribución del trabajo de una cuadrilla especifica. Con dicha

herramienta se puede ver el porcentaje de actividades que son

trabajos productivos, contributorios y no contributorios. Además, se

puede observar la secuencia de trabajo realizado.

La carta balance también nos permite verificar si la cuadrilla está

sobredimensionada y corregir el flujo de trabajo. Al obtener la

secuencia de trabajo realizado, es posible desarrollar un mapa de

procesos donde se puede diseñar un flujo de trabajo más eficiente.

Esta técnica de análisis ofrece, como muy pocas, una respuesta

inmediata posterior a la primera ejecución de una operación,

entregando herramientas básicas para optimizar la ejecución de las

operaciones más importantes.

El objetivo de esta técnica es analizar la eficiencia del método

constructivo empleado, más que la eficiencia de los obreros, de modo

que no se pretende conseguir que trabajen más duro, sino en forma más inteligente.

1.6.7 Productividad en la Construcción

La productividad del trabajo en sistemas productivos se define mediante la relación siguiente:

$$Productividad = \frac{Entrada}{Salida}$$

Donde el término "Entrada" indica la cantidad de recursos utilizados y el término "Salida" indica el producto terminado con los recursos empleados. Este concepto es utilizado en la construcción como también otros nombres como: ratios de producción, capacidad del proceso, rendimientos de avance por recurso, etc. Todas las definiciones anteriores se refieren a lo mismo, la cantidad de recursos utilizados por cada unidad o entregable (en términos constructivos: m3 de concreto, m2 de tarrajeo, etc.). Podemos dividir la productividad que se obtiene de acuerdo al tipo de recurso empleado:

 Mano de Obra: Se expresa como la cantidad de Horas Hombre requeridas para la producción de un entregable determinado. (m3 de concreto/HH empleadas).

- Equipos: De igual manera que la mano de obra, sólo que en este caso se considera la cantidad de Horas Máquina. (m3 de excavación/HM empleadas).
- Materiales: Se refiere a la cantidad de material utilizado, se suele usar en partida donde los materiales poseen mucha incidencia o están sujetos a mucha variabilidad, por ejemplo, el colchón de arena necesario para tendido de tuberías en obras de saneamiento o la utilización de material granular para la conformación de base compactada (ml de base/m3 de material granular).

Al contrastar la cantidad de recursos utilizados contra los presupuestados en la planificación del proyecto (como medida de control) nace la idea de la eficiencia (adecuado uso de los recursos al momento de ejecutar trabajos). Sin embargo, de nada serviría tener un óptimo control de los recursos cuando no se cumplen las metas establecidas en el tiempo requerido (eficacia), en la figura 5 muestra estos conceptos.

Figura 5: Eficiencia y Eficacia

Utilización de Recursos Buena Pobre Alto Efectivo y Eficiente Efectivo pero ALTA Logro ineficiente PRODUCTIVIDAD de Metas Eficiente pero Ineficiente e inefectivo inefectivo Bajo

Fuente: Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2009). Un nuevo enfoque en la gestión: la construcción sin pérdidas. Revista de Obras Públicas, 45-52.

En este contexto Alfredo serpell (2000) establece que la productividad es: "la medición de la eficiencia con la que los recursos son administrados para completar un proyecto específico, dentro de un plazo establecido y con un estándar de calidad dado".

1.7 Marco Situacional

En el contexto actual, el desarrollo de obras aplicando la filosofía lean construction ha ido adquiriendo más importancia dentro del sector de la construcción en mayor grado en las edificaciones, ya que las empresas, principalmente de la capital del país, han comprendido los beneficios de usar conceptos de la filosofía Lean Construction más concretamente en el Sistema Last Planner. Sin embargo, en la región Huánuco sigue siendo desconocida su aplicación.

1.8 Situación Actual de la Construcción en el Perú y Latinoamérica (Rodríguez, 2012)

En 1989, ningún analista político, avizoraba la ocurrencia de una verdadera e inesperada revolución en todo el mundo; en Europa sucedía la caída del Muro de Berlín y el inicio de un definitivo proceso de reunificación de las dos Alemanias, lo cual apenas tomó dos años en producirse. De manera ocurría la desintegración de la Unión Soviética. Se derrumbó la bipolaridad Este – Oeste que habría regido la política mundial durante décadas. Ya no existían enemigos (Estados Unidos y la Ex Unión Soviética, ahora, los amigos son importantes, en el denominado nuevo orden económico mundial, todos son amigos. Es decir, el mundo entraba a una nueva etapa de democracia y de competitividad.

El centro de la geo economía en el mundo se trasladaba del triángulo del Atlántico al triángulo del Pacífico. En el pasado, Londres, París y Nueva York constituyeron el centro de mayor actividad y dinamismo económico en el mundo; hoy en día, este triángulo se ha trasladado al Pacífico: Sindey, Tokio y Los Ángeles. La Cuenca del Pacífico, 30% de la superficie de la Tierra, concentra hoy más del 60% del producto bruto global. Esto último debería ser un tema de reflexión para los peruanos

que, por nuestra privilegiada ubicación geográfica, deberíamos ser el nexo del Atlántico con el Pacífico; esto debería impulsar el desarrollo de estrategias geo políticas.

Por otro lado, está el fenómeno de la globalización, hechos que han dejado de tener una referencia local y han pasado a tener una referencia mundial. Cualquier acontecimiento sucedido en cualquier centro financiero es transmitido al resto del mundo sim importar distancias.

Un país al igual que una empresa, crea valor y es competitivo si es exitoso en el comercio internacional gracias a un uso adecuado del conocimiento y de la tecnología y a una alta productividad, y si con ello genera elevados niveles de vida para la población. En el nuevo orden económico mundial, las ventajas competitivas ya no dependen de los recursos naturales, ni del salario, sino de la productividad de la mano de obra.

Favorecer la desigualdad entre los países, regiones, empresas y personas; crea la marginalidad, pues los no competitivos son dejados de lado. De esta manera, aparecen los trastornos sociales, se promueve la exacerbación del individualismo y la agresividad colectiva, se reduce de esta manera la capacidad de las

organizaciones públicas y las democracias en interactuar con los individuos, entre otras consecuencias.

Dentro de las principales características de países exitosos se tiene:

- Altos índices de ahorro, de inversión y de productividad laboral
- Gran inversión en Infraestructura
- Desarrollo social de la población
- Orientación comercial hacia el exterior
- Estructuras reguladoras que propician el desarrollo
- Una gran inversión en capital humano: en educación y salud
- Entorno claro y transparente que favorece el desarrollo

Un gerente de proyectos visionario persigue en conjunto objetivos de los cuales obtener ganancias es sólo uno, y no necesariamente el principal. Buscar utilidades sí, pero lo guía igualmente una ideología cuyos valores básicos van más allá de sólo ganar dinero; pero paradójicamente, conseguir ganancias mayores que los gerentes motivados sólo por el afán de lucro.

Un gerente no solamente debe buscar el crecimiento o la utilidad de corto plazo, sino que, lo que resulta más importante, debe tener una visión de largo plazo. Una forma de lograrlo, consiste en mantener una

relación saludable con sus clientes y tener la continua participación de sus trabajadores, proveedores y financistas.

1.9 Definición de términos básicos

Lean Production: (Producción sin perdidas): Es aquel tipo de producción cuyo manejo operacional apunta a la eliminación y/o reducción de pérdidas. Cuenta con una serie de herramientas de gestión de producción que le permiten reducir las pérdidas a niveles bastante bajos.

Productividad: Comparación entre lo producido y los recursos empleados.

Planificación: Acto de definir el criterio para generar estrategias de producción entre los recursos usados para lograr dicha producción. Se define qué hacer, como hacer y quienes hacer.

Programación: Es la cuantificación de lo planeado, duración de tareas, recursos usados, interrelación entre tareas.

Sistema: Conjunto de elementos mutuamente relacionados o que interactúan para obtener un fin común.

Pérdidas: Es todo aquello que genera costo, pero no suma a la producción.

Calidad: Es el conjunto de características de un producto que determina el grado de satisfacción de las exigencias de un cliente.

Flujo: Toda acción realizada durante la ejecución de un proceso. Puede clasificarse como contributorios o no contributorios.

Variabilidad: Es la ocurrencia de eventos distintos a los previstos por efectos internos o externos.

Partida: Conjunto de procesos agrupados con la finalidad de llevar un control de costos y ejecución de un proyecto.

Proceso: Conjunto de actividades o subprocesos realizados para obtener un producto.

Subproceso: Conjunto de operaciones cuyo resultado es la obtención parcial de un producto.

Microproceso: Operación realizada en un subproceso.

Tarea: Trabajo encomendado a una persona o conjunto de personas que debe ejecutarse en un tiempo determinado.

Trabajo Productivo (TP): Trabajo que aporta de forma directa a la producción, agrega valor al producto terminado.

Trabajo Contributorio (TC): Trabajo de apoyo, que debe ser realizado para que pueda ejecutarse el trabajo productivo. Actividad aparentemente necesaria, pero no aporta valor.

Trabajo No Contributorio (TNC): Cualquier actividad que no genera valor, y que caiga directamente en la categoría de pérdida, son actividades no necesarias, tiene un costo y no agregan valor.

Jalar: Generar productos en cantidades en función a lo que exige la demanda y lo que realmente se puede producir.

Empujar: Producir sin tomar en cuenta la demanda, lo cual genera inventarios.

Benchmarking: Es una técnica o herramienta de gestión que consiste en tomar como referencia los mejores aspectos o prácticas de otras empresas, ya sean competidoras directas o pertenecientes a otro sector (y, en algunos casos, de otras áreas de la propia empresa), y adaptarlos a la propia empresa agregándoles mejoras.

1.10 Matriz de Consistencia

TÍTULO: APLICACIÓN DE LOS CONCEPTOS DE LA FILOSOFÍA LEAN CONSTRUCTION PARA MEJORAR LA PRODUCTIVIDAD DE PAVIMENTOS RÍGIDOS

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	INDICADORES	UNIDAD DE MEDIDA
PROBLEMA GENERAL: ¿La aplicación de la metodología Lean Construction en obras de pavimentos rígidos mejorará la productividad en los procesos de ejecución, mediante el Sistema Last Planner?	OBJETIVO GENERAL Aplicar la metodología Lean Construction en los procesos de ejecución de obras de pavimentos rígidos mediante el uso del Sistema Last Planner con la finalidad de mejorar la productividad.	HIPÓTESIS GENERAL: La aplicación de la metodología Lean Construcion mediante el sistema Last Planner a una obra de pavimento rígido mejorará la productividad.	INDEPENDIENTE:	Rendimientos	Horas hombre/unidad de producción.
PROBLEMAS ESPECÍFICOS:	OBJETIVOS ESPECÍFICOS:	HIPÓTESIS ESPECÍFICAS:	VARIABLE DEPENDIENTE:		
¿De qué manera la aplicación de la metodología Lean Construction mejoran en la producción de la construcción de obras de pavimentos rígidos?	Demostrar como la aplicación de la metodología Lean Construction aumentaran la productividad de la construcción de obras de pavimentos rígidos.	La aplicación de la metodología Lean Construction aumenta la productividad evitando las paras en el flujo de producción, en las obras de pavimentos rígidos.	Productividad de obra.	Rendimiento.	Mediciones de Rendimiento.
¿La adaptación del Sistema Last Planner facilitará el control de la producción en los procesos de ejecución de obras de pavimento rígido?	Adaptar el Sistema Last Planner para facilitar el control de producción en los procesos de ejecución de pavimentos rígidos.	La adaptación del Sistema Last Planner permite controlar los procesos de producción en la ejecución de pavimentos rígidos.			
¿Mejorará la productividad en la construcción de pavimentos rígidos con la aplicación de la Filosofía Lean Construction?	 Comparar los enfoques del Lean Construction y el enfoque PMI (Sistema Tradicional) 	 La aplicación de la Filosofía Lean Construction permite obtener mejores resultados en productividad que el enfoque PMI (Sistema Tradicional) 			

CAPÍTULO II

2. MARCO METODOLÓGICO

2.1 Tipo y nivel de investigación

2.1.1 Tipo de investigación

Tipo de Investigación Aplicada: Se busca conocer a profundidad el tema en estudio para poder solucionar un problema concreto (Mejorar la Productividad).

2.1.1 Nivel de investigación

Nivel de Investigación Explicativa: El objetivo es la explicación de las causas del problema y generar un sentido de entendimiento a dicho problema en estudio.

2.2 UNIVESO/POBLACIÓN Y MUESTRA

El universo de la investigación está conformado por las obras de construcción en general.

La población vendría a ser las obras de construcción lineales más específicamente las obras de la Pavimento Rígido.

La muestra será el proyecto donde se ejecuta la presente tesis "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI".

CAPÍTULO III

3. RESUMEN EJECUTIVO DEL PROYECTO.

3.1 CONSIDERACIONES GENERALES

a) NOMBRE DEL PROYECTO

"MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI"

b) UBICACIÓN

Lugar : La Marina – Aguaytia

Distrito : Padre Abad

Provincia: Padre Abad

Región : Ucayali

c) CLIMA Y ALTITUD

El clima es cálido y lluvioso con temperatura promedio de 23°C que corresponde al de Selva baja y con precipitaciones durante los meses de octubre a abril. La altitud promedio es 347 m.s.n.m. la precipitación promedio anual es de 3,000 mm.

d) GEOLOGÍA Y TIPO DE SUELO

El tipo de suelo de los jirones adyacentes al proyecto es un suelo arcilloso de mediana plasticidad de color crema amarillenta.

e) ANTECEDENTES

El Sistema de la Red Vial Urbana en la ciudad de Aguaytia, es deficiente e insuficiente; algunos por la ampliación de zonas urbanas, necesitan ser implementados, otros se encuentra en mal estado de conservación y mantenimiento, presentando la superficie de pavimento deformaciones del grado de severidad de fuertes a muy Fuertes, ocurridos por un sistema inadecuado de drenaje pluvial; es insuficiente porque la demanda actual del volumen de tránsito proporcionados por el parque automotor así lo determina, por lo que debe mejorarse las interconexiones viales proyectando pavimentos adecuados y un eficiente sistema de drenaje.

De lo anterior se verifica que la infraestructura actual de estas vías, con una superficie de rodadura sobre afirmado en mal estado, se halla fuera de los estándares normales de vías urbanas de similar IMD, no permitiendo una adecuada transitabilidad tanto de los beneficiarios y usuarios en general; ya que las fuertes precipitaciones locales y el tránsito continuo, deterioran y erosionan la superficie de rodadura, ocasionando la presencia de baches pronunciados, dificultándose de esta manera el tránsito de vehículos y peatones, además de ocasionar

frecuentes desperfectos mecánicos en los vehículos. Del mismo modo, por la falta de un pavimento de orden superior, el tránsito vehícular provoca polvaredas, ocasionando malestar entre los pobladores y usuarios.

El drenaje superficial de la vía es inadecuado. Existe la presencia parcial de cunetas naturales, pero éstas debido a la pérdida de continuidad y deficiente mantenimiento, colapsan produciéndose de esta manera anegamientos en diferentes zonas.

En los jirones adyacentes a la infraestructura vial del proyecto, específicamente en los jirones Av. San Pedro, Calle 14, Calle 22, Calle 17, Calle 18 y Calle 20.

f) POBLACIÓN BENEFICIARIA

La población beneficiaria es la población del distrito de Aguaytia en todo el cercado concurrente a la JJ. VV. La Marina. La población directamente afectada se ha determinado en aproximadamente 181 predios que hacen un total de 905 personas.

g) SERVICIOS

✓ Educación: Cuenta con Instituciones Educativa Integral del nivel inicial, Primaria y Segundaria, de Padre Abad.

- ✓ Salud: No cuenta con un establecimiento de salud, las JJ.
 VV. LA MARINA.
- ✓ Agua y Desagüe: Actualmente cuenta con Servicio de agua y Desagüe ejecutado por la Municipalidad Provincial de Padre Abad con financiamiento del Programa Agua para Todos en el año 2009.
- ✓ Electricidad: Actualmente cuenta con energía eléctrica las 24 horas y los siete días de la semana.
- ✓ Teléfono: Se cuenta con el servicio de teléfono.

h) CANTERA DE AGREGADOS Y MATERIAL DE BASE GRANULAR

Para la ejecución de las obras de la pavimentación se usará el Hormigón del Rio Aguaytia. Y del material fino en la entrada de Pampa Yurac.

El hormigón para la base granular se usará la Cantera ubicada en la margen derecha del Rio Aguaytia y el material fino de la cantera ubicada en la entrada a la ciudad de Aguaytia.

3.2 DESCRIPCIÓN DEL PROYECTO

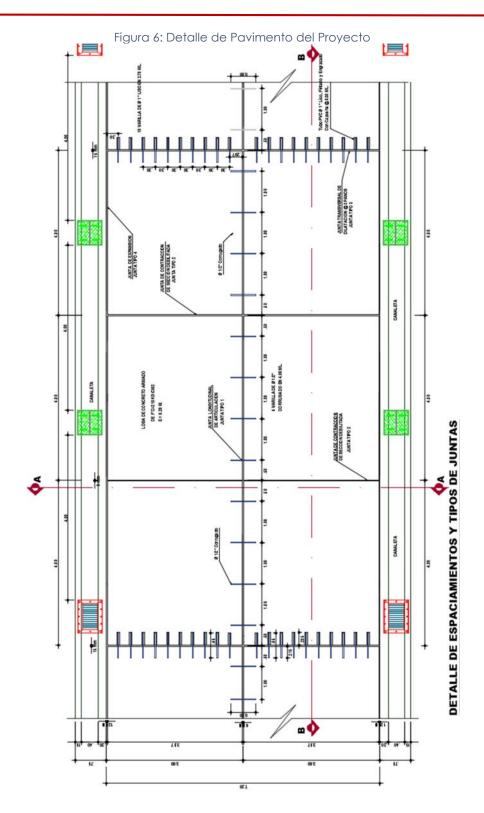
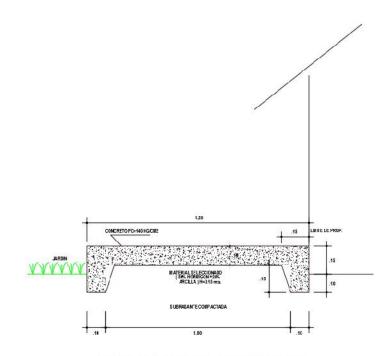
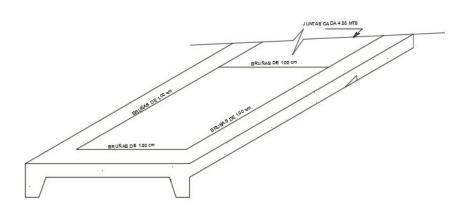

El presente proyecto consiste en el mejoramiento de calles con el pavimento rígido de concreto f´c=210 kg/cm2, veredas de 140 kg/cm2, canaletas para el drenaje pluvial en las siguientes calles:

Tabla 3: Longitud de calles del Proyecto

CALLES		
PROLONGACIÓN AV. TUPAC AMARU	LONG.=	99.50
AV. SAN PEDRO	LONG.=	539.00
AV. SAN PEDRO-JR. VARGAS GUERRA	LONG.=	43.00
JR. GARCILAZO DE LA VEGA	LONG.=	80.00
CALLE 14	LONG.=	104.50
CALLE 17	LONG.=	212.30
CALLE 18	LONG.=	105.80
CALLE 20	LONG.=	168.90
CALLE 21	LONG.=	75.35
CALLE 22	LONG.=	218.50
CALLE 23	LONG.=	65.30
TOTAL		1,712.15

Tabla 4: Área de Pavimento del Proyecto


CALLES	LONGITUD	ANCHO	ÁREA
PROLONGACION TUPAC AMARU	99.50	7.20	716.40
CALLE 14	104.50	7.20	752.40
CALLE 17	212.30	7.20	1528.56
CALLE 18	105.80	7.20	761.76
CALLE 20	168.90	7.20	1216.08
CALLE 21	75.35	7.20	542.52
CALLE 22	75.20	7.20	541.44
	68.30	7.20	491.76
	75.00	7.20	540.00
CALLE 23	65.30	7.20	470.16
AV. SAN PEDRO	60.00	7.20	432.00
	50.00	5.00	250.00
	429.00	7.20	3088.80
Jr. Vargas Guerra (Escalinata)	43.00	7.20	309.60
JR. GARCILAZO DE LA VEGA	80.00	7.20	576.00
TOTAL AREA A PAVIMENTAR 12,217.			


ÁREA TOTAL DE VEREDAS A CONSTRUIR:

2,843.49 METROS LINEALES DE VEREDA, F`C= 140 KG/CM2 DE 1.20M. 3387.50 METROS CUADRADOS DE VEREDA F'C= 140 KG/CM2

Figura 7: Detalle de Veredas del Proyecto

VEREDAS BORDE DE VIVIENDAS

ISOMETRIA VEREDAS (VIVIENDAS)

ÁREA TOTAL DE CANALETAS DE CONCRETO f'c=210 kg/cm2 A CONSTRUIR:

3,183.20 METROS LINEALES DE CANALETAS DE SECCIÓN 0.75x0.80 con F'C= 210 KG/CM2

Figura 8: Sección Transversal típica del Proyecto

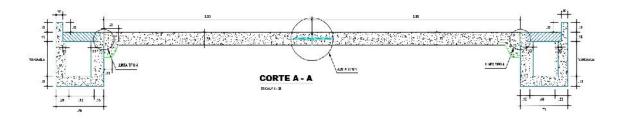


Figura 9: Detalle de Canaleta del Proyecto

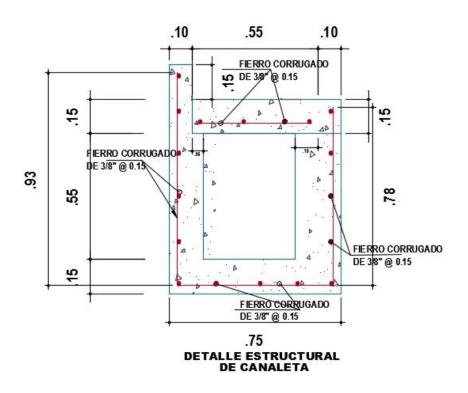


Figura 10: Vista Isométrica de Canaleta del Proyecto

VISTA ISOMÉTRICA DE CANALETA JUNTA DE DILATACION

Fuente: Expediente técnico "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI"

MUROS DE CONTENCIÓN DE CONCRETO f'c=210 kg/cm2 A CONSTRUIR:

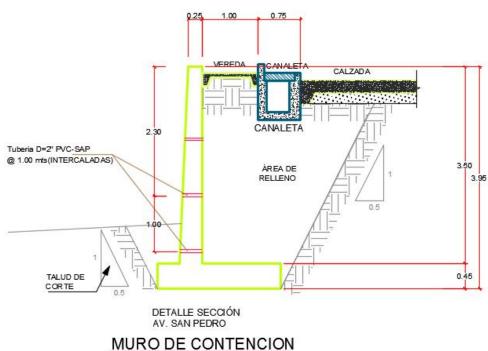
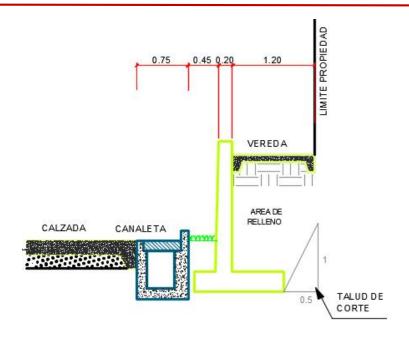
Muro Tipo 1 L=28.00M, H=3.50M

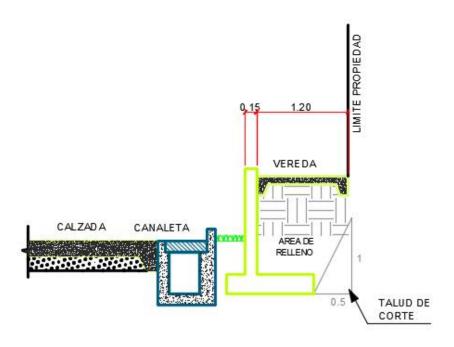
Muro Tipo 2 L=32.50M, H=2.50M

Muro Tipo 3 L=88.62M, H=1.90M

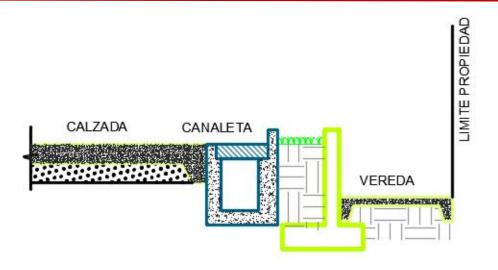
Muro Tipo 4 L=142.25M, H=1.40M

Muro Tipo 5 L=157.60M, H=1.00M


Figura 11: Tipos de Muros de Contención del Proyecto

MURO DE CONTENCION EN VOLADIZO - TIPO 1 H = 3.50m



MURO DE CONTENCION EN VOLADIZO - TIPO 3 H = 1.90m

MURO DE CONTENCION EN VOLADIZO - TIPO 4 H = 1.40m

MURO DE CONTENCION EN VOLADIZO - TIPO 5 H = 1.00m

Fuente: Expediente técnico "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI"

OBJETIVOS DEL PROYECTO

Dicho proyecto tendrá como objetivo principal mejorar las condiciones de vías urbanas del distrito de Padre Abad en una longitud de 1,090.72 ml de pavimento rígido de 0.20mts., para lo cual tendrá los siguientes elementos:

Pavimentación en Pistas.

Drenaje Pluvial.

Veredas y Martillos.

3.3 DISEÑO GEOMETRICO DE LA VÍA

Las vías proyectadas en los jirones de las cuadras proyectadas están con un ancho promedio de 7.20 metros de ancho de calzada, dos carriles de 3.60 m. cada uno de ida y de vuelta teniendo el ancho de la plataforma mencionada de 7.20 mts.

La calzada tendrá un bombeo de 2%, para un mejor escurrimiento de las aguas de lluvia.

Así mismo se ha proyectado canaletas de evacuación pluvial, las mismas que fueron diseñadas teniendo en consideración su área de influencia hídrica, así como los parámetros pluviométricos de máximas lluvias a lo largo de un periodo de retorno.

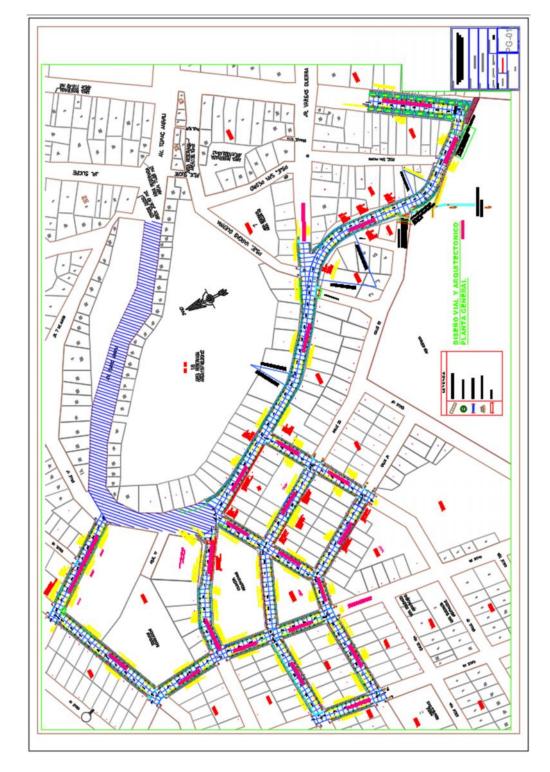


Figura 12: Plano General del Proyecto

3.4 PRESUPUESTO DE OBRA

El Presupuesto de Obra que a continuación se muestra es el presupuesto del contrato celebrado entre la Entidad y el Contratista.

Tabla 5: Presupuesto de Obra

DESCRIPCION	MONTO
COSTO DIRECTO	S/. 3,612,459.93
GASTOS GENERALES 13%	S/. 469,619.79
UTILIDAD 12.9999995%	S/. 469,619.77
TOTAL PRESUPUESTO	S/. 4,551,699.49

Fuente: Expediente técnico "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI"

3.5 PLAZO Y MODALIDAD DE EJECUCIÓN

El plazo de ejecución contractual es de **DOCIENTOS CUARENTA (240) días calendario** y la modalidad de ejecución es por **CONTRATA**.

3.6 FINANCIAMIENTO Y COFINANCIAMIENTO

Estará a cargo del GOBIERNO REGIONAL DE UCAYALI.

3.7 TRABAJOS A REALIZAR

A continuación, se presenta todas las partidas a ejecutar en la ejecución del proyecto con su respectiva unidad de medida y metrado.

Tabla 6: Partidas a Ejecutar en el Proyecto

Item	Descripción	Unidad	Metrado
01	"MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINA LA MARINA"		
01.01	OBRAS PROVISIONALES		
01.01.01	ALQUILER DE ALMACEN	MES	6.00
01.01.02	REUBICACION DE POSTES DE LUZ	und	10.00
01.01.03	REUBICACION DE POSTES DE TELEFONO	und	6.00
01.01.04	DEWOLICION DE VEREDAS EXISTENTES	m3	1,400.00
01.01.05	NIVELACION DE BUZONES EN GENERAL	und	24.00
01.01.06	NIVELACION DE BUZONES, REPARACION DE TUBERIAS DE AGUA Y DESAGUE, NIVELACION DE CAJAS DE REJISTRO.	und	25.00
01.01.07	MOVILIZACION Y DESMOVILIZACION DE EQUIPO PESADO	hm	1.00
01.02	TRABAJOS PRELIMINARES		
01.02.01	TRAZO, NIVELES Y REPLANTEO	m2	20,328.29
01.02.02	TRANSPORTE DE EQUIPOS Y HERRAMIENTAS	GLB	1.00
01.02.03	CARTEL DE IDENTIFICACION DE LA OBRA 8.50 x 3.60M	und	1.00
01.02.04	LIMPIEZA DE TERRENO MANUAL	m2	20,328.29
01.03	MOVIMIENTO DE TIERRAS		
01.03.01	CORTE DE MATERIAL A NIVEL DE SUB-RASANTE	m3	7,173.08
01.03.02	CORTE DE TERRENO CON EQUIPO EN ZONA DE MATERIAL ORGANICO	m3	85.61

	1		
01.03.03	CORTE SUPERFICIAL MANUAL HASTA 0.15 MT EN VEREDA Y MARTILLO	m3	476.23
01.03.04	EXCAVACION MANUAL PARA CANALETAS EN TERRENO COMPACTO	МЗ	1,661.91
01.03.05	EXCAVACION MANUAL PARA UÑA DE CONCRETO EN TERRENO COMPACTO	m3	123.27
01.03.06	RELLENO COMPACTADO CON MATERIAL DE PRESTAMO, PARA NIVELAR SUB RASANTE	m3	5,758.86
01.03.07	COMPACTACION Y CONFORMACION DE SUB-RASANTE	m2	12,217.48
01.03.08	RELLENO COMPACTADO CON MATERIAL PROPIO - MARTILLO	m3	585.43
01.03.09	ELIMINACION DE MATERIAL EXCEDENTE	m3	14,001.35
02	PAVIMENTOS		
02.01	BASE DE 0.20M		
02.01.01	BASE DE 0.20 M.	m2	12,217.48
02.02	OBRAS DE CONCRETO		
02.02.01	ENCOFRADO Y DESENCOFRADO LOSA DE CONCRETO	m2	2,026.43
02.02.02	PAVIMENTO DE CONCRETO FC= 210 KG/CM2 E=0.20 M	m2	12,217.48
02.02.03	ACERO CORRUGADO (BASTONES EN JUNTAS)	kg	1,397.11
02.02.04	ACERO LISO (BASTONES EN JUNTAS) - TRANVERSALES	kg	5,621.84
02.02.05	UÑA DE CONCRETO FC= 210 KG/CM2 EN LOSA	m3	102.73
02.03	JUNTAS		
02.03.01	JUNTA DE CONSTRUCCION CON TEKNOPORT	m	513.65
02.03.02	JUNTA DE CONTRACCION (E=1" H=2")	m	2,054.58
02.03.03	JUNTA DE DILATACION (E=1" H=8")	m	1,027.29
02.03.04	JUNTA LONGITUDINAL (E=1" H=8")	m	1,712.15
02.04	CURADO Y LIMPIEZA DE LOSA - VEREDA		
02.04.01	TENDIDO DE ARROCERA Y CURADO	m2	16,120.37
03	OBRAS DE DRENAJE		
03.01	TRABAJOS PRELIMINARES		
03.01.01	TRAZO, NIVELACION Y REPLANTEO EN CANALETAS	ML	3,164.83
03.02	OBRAS DE CONCRETO ARMADO		

03.02.01	CONCRETO FC=210 KG/CM2 EN LOSA FONDO , MUROS Y TECHO DE CANALETAS	m3	1,383.58
03.02.02	ENCOFRADO Y DESENCOFRADO DE CANALETAS	M2	9,840.37
03.02.03	ACERO DE REFUERZO FY=4200 KG/CM2	kg	64,559.21
03.02.04	WATER STOP NEOPRENE 6" EN CANALETAS	М	636.64
03.02.05	TAPAS DE CONCRETO PARA INSPECCION Y LIMPIEZA 0.60X0.60, FC=210 kg/cm2	und	478.00
03.02.06	REJILLA METALICA CON MARCO 0.60x0.80 EN CANALETA	GLB	253.00
04	MURO DE CONTENSION		
04.01	TRABAJOS PRELIMINARES		
04.01.01	TRAZO NIVEL Y REPLANTEO	m2	529.60
04.02	MOVIMIENTO DE TIERRAS		
04.02.01	EXCAVACION MANUAL PARA CIMIENTO MURO	m3	571.45
04.02.02	RELLENO CON MATERIAL PROPIO - MURO DE CONTENCION	m3	441.93
04.02.03	ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	m3	161.91
04.03	OBRAS DE CONCRETO SIMPLE		
04.03.01	SOLADO DE CONCRETO E=0.10 M	m2	529.60
04.04	OBRAS DE CONCRETO ARMADO		
04.04.01	CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION	m3	302.42
04.04.02	ENCOFRADO Y DESENCOFRADO DE MURO DE CONSTENCION	m2	1,408.76
04.04.03	ACERO DE REFUERZO FY=4200 KG/CM2	kg	14,005.62
04.04.04	TUBOS DE PVC D=3" C-7.5 SAP PARA LLORADORES	m	184.50
04.05	JUNTAS		
04.06	JUNTA DE CONSTRUCCION CON TEKNOPORT	m	140.88
05	VEREDAS Y MARTILLOS DE CONCRETO		
05.01	CONCRETO FC= 175 KG/CW2 BRUÑADO EN VEREDAS DE MARTILLO E = 0.15 m.	M2	515.39
05.02	CONCRETO FC=140 KG/CM2VEREDAS E=0.10 m	m2	3,387.50
05.03	CONCRETO FC= 140 KG/CM2 EN UÑAS DE VEREDAS	m3	53.17

05.04	RAMPA DE ACCESOS DE CONCRETO EN VEREDAS.	m2	259.30
05.05	ENCOFRADO Y DESENCOFRADO DE VEREDAS	m2	426.52
05.06	JUNTAS DE DILATACION EN VEREDA E = 5 MM H⊨4"	m	426.52
05.07	JUNTAS DE CONSTRUCCION EN VEREDA E=1"	m	2,843.49
06	SEÑALIZACION		
06.01	PINTURA TRAFICO EN LINEAS CONTINUAS EN PAVIMENTO	М	342.43
06.02	PINTURA DE SIMBOLOS Y LETRAS EN PAVIMENTO	m2	932.45
06.03	PINTURA EN SARDINEL DE CANALETA	m	318.32
06.04	SEÑALES PREVENTIVAS INCLUIDO POSTES DE SOPORTE	und	20.00
06.05	SEÑALES REGLAMENTARIAS INCLUIDO POSTES DE SOPORTE	und	20.00
07	VARIOS		
07.01	LIMPIEZA FINAL DE OBRA	GLB	1.00
08	PLAN DE MANEJO AMBIENTAL		
08.01	NORMATIVIDAD AMBIENTAL		
08.01.01	APLICACION DE NORMAS DE COMPORTAMIENTO	mes	1.00
08.01.02	SEGUIMIENTO Y CUMPLIMIENTO A LAS PAUTAS SOCIO AMBIENTALES	mes	1.00
08.02	PLAN DE FORESTACION Y REVEGETACION		
08.02.01	COMO ORNAMENTACIÓN		
08.02.01.01	ARBOLES ORNAMENTALES		
08.02.01.01.01	TRAZO, REPLANTEO Y LIMPIEZA DE TERRENO	m2	1,820.52
08.02.01.01.02	ADQUISICION Y TRANSPORTE DE PLANTONES ORNAMENTALES.	und	50.00
08.02.01.01.03	PLANTADO DE PLANTONES ORNAMENTALES	und	50.00
08.02.01.02	GRAS		
08.02.01.02.01	TRAZO, REPLANTEO Y LIMPIEZA DE TERRENO	m2	1,820.52
08.02.01.02.02	ADQUISICION Y TRANSPORTE DE PLANTONES DE GRASS SACO/151/2	und	100.00
08.02.01.02.03	PLANTADO DE GRASS AMERICANO	m2	1,820.52

08.03	MANEJO DE CANTERA		
08.03.01	MANEJO DEL AREA DE CANTERA DE AGREGADOS Y MATERIAL DE RELLENO	GLB	1.00
08.03.02	CONTROL DE POLVO EN MOVIMIENTO DE TIERRA Y TRASALADO A BOTADEROS	mes	1.50
08.04	SEÑALIZACION		
08.04.01	LETREROS DE SEÑALIZACION AMBIENTAL DE 1.00x0.50 M. C/PLANCHA METALICA (==1/40, BASTIDORES DE MADERA TORNILLO DE 1"X1.1/2"	und	5.00
08.04.02	LETREROS DE SEÑALIZACION AMBIENTAL DE 0.50x0.30 M. C/PLANCHA METALICA e=1/40, BASTIDORES DE MADERA TORNILLO DE 1"X1.1/2"	und	10.00
08.05	MANEJO DE CAMPAMENTO		
08.05.01	ADECUACION DE ALMACEN, OFICINAS, COMEDOR Y OTROS	GLB	1.00
08.05.02	RECOLECTORES DE RESIDUOS SOLIDOS TIPO BASCULANTE METALICO	und	2.00
08.05.03	INSTALACION DE LETRINA PORTATIL (FIBRA DE VIDRIO)	und	2.00
08.05.04	IMPLEMENTACION DE BOTIQUIN	und	1.00
08.06	EDUCACION AMBIENTAL		
08.06.01	CHARLAS AL PERSONAL DE OBRA	und	3.00
08.06.02	CHARLAS A LA COMUNIDAD	und	2.00
08.06.03	POLOS DE ALGODON CON LOGOTIPO AMBIENTAL	und	100.00
08.06.04	AFICHES AMBIENTALES DE 1.00x0.70 M. CON CARTULINA DUPLEX SEGUN MODELO	und	100.00
08.07	PROGRAMA DE SEGURIDAD Y CONTINGENCIA EN OBRA		
08.07.01	INSTALACION DE CINTAS DE SEGURIDAD ALREDEDOR DE LA OBRA	ML	2,500.00
08.07.02	PROGRAMA DE CONTINGENCIAS DURANTE LA EJECUCION DE LA OBRA	GLB	1.00
08.08	PROGRAMA DE ABANDONO DE OBRA		
08.08.01	RESTAURACION DEL AREA DE CAMPAMENTO Y REVEGETACION	m2	200.00
08.08.02	CIERRE DE CANTERAS	m2	500.00
08.08.03	CIERRE DE BOTADEROS	m2	550.00
08.09	PARTICIPACION CIUDADANA		

08.09.01	FORMACION	DEL	COMITE	DE	MANTENIMIENTO	DE	LA	und	1.00
00.00.01	INFRAESTRUCTURA Y EQUIPOS							U. IU	

Fuente: Expediente técnico "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE PADRE ABAD – UCAYALI"

3.8 BENEFICIOS ESPERADOS

- ✓ Beneficios Ambientales. Dentro los beneficios ambientales será la disminución de los molestos ruidos y sonidos que producen los vehículos que transitan por las avenidas circundantes al parque, además de ello también se disminuirá la cantidad de polvo que existe que existe en la zona por tener un afirmado
- ✓ Beneficios de Seguridad. En lo referente a la seguridad se espera un mejor control del tránsito, señalizando el lugar y mediante ello evitar los accidentes que ocurren.
- ✓ Beneficios Socio Económicos. Dentro de los beneficios esperados en el proyecto es la de crear mayores puestos de trabajo durante su ejecución, como también se crearán en el contorno del proyecto el comercio por parte de los moradores del lugar.

CAPÍTULO IV

4. IMPLEMENTACIÓN LEAN Y APLICACIÓN DEL SISTEMA LAST PLANNER

4.1 CONSIDERACIONES GENERALES

4.1.1 POR QUÉ MUDARSE DE LO CONVENCIONAL

La producción convencional implica una planificación convencional, la cual se basa en planificar una determinada obra desde su inicio hasta su fin mediante el uso de técnicas como PERT y CPM, una planificación de esta naturaleza tiene la limitación de estar hecha desde un escritorio y en el peor de los casos con un limitado e insuficiente juicio experto: consecuentemente, se tiene una lista de "buenos deseos" de lo que DEBERIA hacerse para la obra en mención. Sin embargo, como es habitual, la obra suele tener un avance distinto debido a diferentes motivos y lo que se HIZO muy probamente termina siendo distinto a lo planificado (Orihuela y Ullao, 2011).

El siguiente cuadro muestra un resumen de las diferencias fundamentales entre la producción convencional y la producción sin perdidas en la construcción (Campero y Alarcón, 2009).

Tabla 7: Diferenciación entre la producción convencional y la producción sin pérdidas en la construcción

	PRODUCCIÓN CONVENCIONAL	PRODUCCIÓN SIN PERDIDAS
OBJETO	Afecta a productos y servicios	Afecta a todas las actividades de las empresas
ALCANCE	Control	Gestión, asesoramiento, control
MODO DE APLICACIÓN	Impuesta por la dirección	Por convencimiento y participación
METODOLOGÍA	Detectar y corregir	Prevenir
RESPONSABILIDAD	Departamento de calidad	Compromisos de todos los miembros de la empresa
CLIENTES	Ajenos a la empresa	Internos y externos, al final de cada proceso hay un cliente
CONCEPTUALIZACIÓN DE LA PRODUCCIÓN	La producción consiste de conversiones (actividades), todas las actividades añaden valor al producto	La producción consiste de conversiones y flujos; hay actividades que agregan valor al producto y actividades que no agregan valor
CONTROL	Costo de las actividades	Dirigido hacia el costo, tiempo y flujo de trabajo

MEJORA	Implementación de nuevas tecnologías	Reducción de las actividades de flujo (especialmente las que no agregan valor) y aumento de la eficiencia de los procesos con mejoras continuas y tecnologías en
		pro de hacer un flujo más eficiente

Fuente: Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2009). Un nuevo enfoque en la gestión: la construcción sin pérdidas. Revista de Obras Públicas, 45-52.

Se concluye que la producción sin pérdidas requiere de un carácter preventivo y trabajo en equipo para ser exitosa, en contraposición a lo convencional donde cada departamento actúa de manera aislada y enfocada en objetivos particulares. Busca además una conceptualización de la producción donde no todas las actividades agregan valor, por tanto, esas últimas al ser identificables pueden ser gestionadas y controladas para maximizar el valor y mejorar los procesos continuamente.

Alarcón y Pellicer (2009) sugieren una estrategia que puede resumirse en cinco grandes ideas:

1. Aplicación de la ingeniería concurrente: Colaborar, realmente colaborar, durante el diseño, la planificación y ejecución del proyecto: Esto requiere la participación de los diversos participantes en las diversas etapas del proyecto, además del

conocimiento y aplicación de las fases previas a la ejecución Lean.

- 2. <u>Trabajo y aprendizaje colaborativo:</u> Incrementar la relación entre todos los participantes del proyecto con la finalidad de desarrollar las relaciones y la confianza mutua, que permita compartir errores y oportunidades de aprendizaje.
- 3. Acción Lingüística o Conversación para la acción: Considerar los proyectos como cadenas de compromisos: El trabajo de gestión es la articulación permanente de cadenas de compromisos (Alarcón y Pellicer, 2009); los lideres deben dar coherencia a las mismas y velar de manera asertiva por su cumplimiento para enfrentar un porvenir incierto, creando el futuro conjuntamente con los participantes del proyecto.
- 4. Privilegiar la Productividad Global ante la Local: Optimizar el proyecto, no las partes: Los proyectos pueden descontrolarse cuando cada gestor ejerce una presión por la reducción de tiempos y costos en cada tarea; por ejemplo, presionar por una alta productividad al nivel de tareas puede mejorar el desempeño local pero no causar prejuicios mayores en los procesos siguientes complicando la coordinación, incrementando los accidentes y otros aspectos que a menudo

no son considerados, la optimización independiente de un solo proceso o varios va en contra de la teoría de restricciones.

5. Retroalimentación: Acoplar firmemente acción con aprendizaje: La mejora continua de costos, plazos y valor global del proyecto se hace posible cuando los actores del proyecto aprenden de sus acciones; el trabajo puede realizarse de forma que cada actor recibe retroalimentación inmediata de sus acciones respecto a lo bien que cumple con los propósitos y satisface los requerimientos de su trabajo. Por otro lado, fácticamente, es indispensable que tomemos medidas cuantitativas en torno a lo que queramos mejorar.

Con estas ideas se comprenden la importancia de la ruptura de paradigmas creados por las prácticas tradicionales y de la apertura que las organizaciones deben tener para que una implementación Lean se dé de manera exitosa.

4.1.2 DETECCIÓN DE PERDIDAS EN OBRA

El principal objetivo de la Filosofía Lean es la eliminación de perdidas, se consideran 7 tipos de perdidas:

• Sobre-Producción

- Tiempo de Espera
- Transporte
- Sobre-Procesamiento o Procesos inapropiados
- Inventarios Innecesarios
- Movimientos innecesarios
- Defectos Mala Calidad

En la siguiente imagen se muestra una demolición de canaleta que estuvo mal alineada por no respetar el ancho de canaleta especificada en el expediente técnico. Esta pérdida se considera como trabajos rehechos.

Figura 13: Demolición de Canaleta mal ejecutada

Fuente: Propia.

En una obra lineal como la de pavimentos rígidos se realiza mucho transporte de material por cual sería conveniente poner un vehículo como por ejemplo una moto carga para trasladar los materiales de un lugar a otro y evitar las perdidas por trasporte como se presenta en la siguiente imagen.

Figura 14: Transporte de Materiales ineficiente

Fuente: Propia.

Se muestra el trabajo de amarrar los fierros lo cual podrían realizarlo solo peones, pero se observa que un operario está realizando el mismo trabajo ya que no tiene frente de trabajo lo cual nos genera pérdidas por que el obrero no está realizando la función de operario sino de peón, esto se debe a una mala programación o que simplemente no existe programación, sino que se trabaja día a día sin un rumbo.

Figura 15: Trabajo de Amarrado de Fierros

Fuente: Propia.

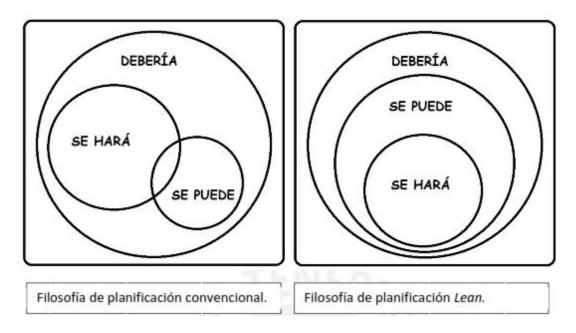
Las esperas también son un tipo de perdidas, se puede dar por falta de materiales o por falta de instrucciones para ejecutar el trabajo, la siguiente imagen vemos a dos obreros que no saben cómo realizar el trabajo por falta de instrucciones esto se puede evitar si antes de ejecutar los trabajos se prevee todas las restricciones que se pudieran tener en cada trabajo que se va a realizar, el sistema Last Planner no permite ejecutar ningún trabajo que no tenga todas las restricciones levantadas.

Figura 16: Esperas debido a la falta de Instrucciones

Fuente: Propia.

Lo más importante para poder aplicar la Filosofía Lean con éxito es INVOLUCRAR AL PESONAL OBRERO ya que sin la voluntad de ellos no se obtendría los resultados esperados, por eso es recomendables tener incentivos cuando se cumplen metas trazadas, realizar actividades extra laborales como campeonatos de futbol, para que se pueda interactuar entre todos los trabajadores de la obra. Esto mejora en gran parte la voluntad, tiene a los trabajadores motivados y que se sientan parte de la obra.

4.2 EL CONTROL DE PRODUCCIÓN: SISTEMA LAST PLANNER


Como se mencionó anteriormente el control de la producción está regido por la aplicación del sistema Last Planner. El uso de esta herramienta tiene dentro de sus finalidades asegurar el flujo de las operaciones, posteriormente y solo a partir de esto podríamos optimizarlo con el balance de recursos y finalmente optimizar cada proceso.

El sistema Last Planner es posiblemente la técnica más divulgada dentro de la filosofía "Lean Construcción". Cobra especial énfasis en la etapa de ejecución, pero es innegable que su uso es importante en la etapa de diseño. La finalidad de este sistema es cambiar los métodos tradicionales, basados en el CPM, además de incrementar la confiabilidad de la misma y mejorar el desempeño en la obra. El LPS (Last Planner System) está especialmente diseñado para mejorar el control de incertidumbre y asegurar el flujo de las obras, hecho que se consigue a través de la aplicación de acciones concretas en los diferentes niveles de la planificación (Alarcón y Pellecer, 2009).

El LPS plantea principalmente el conocimiento pleno de lo que "se puede" hacer en la obra para posteriormente enunciar lo que "se hará". Estos dos sub conjuntos, pertenecen al conjunto de los que "debería" hacerse, según lo que determinen los planificadores.

A continuación, se muestra un contraste entre la planificación usual y la planificación Lean.

Figura 17: Filosofía de Planificación Tradicional Vs. Filosofía de Planificación Lean

Fuente: Rodríguez Fernández, A. D., Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2011). La gestión de la obra desde la perspectiva del último planificador. Revista de Obras Públicas, 1-

La figura anterior muestra (a la izquierda) como la planificación usual o convencional opera, inicialmente se define lo que se "debería" avanzar para mantener el plan inicial y se decide lo que "se hará" en cierto periodo de tiempo; sin embargo debido a las restricciones y otras limitaciones no contempladas no todo lo que se había planeado hacer "se puede", en consecuencia, si no se conoce previamente lo que se

puede hacer, lo que realmente se ejecuta es una intersección entre los dos subconjuntos. La filosofía lean construction plantea un escenario donde antes de decidir lo que "se hará" se compruebe que es lo que "se puede" hacer en función de las restricciones, si es que hubieran. De ese modo se evita que cualquier actividad se detenga por alguna restricción no liberada de la gestión del "se puede", por esa razón los planificadores deben buscar agrandarlo levantando restricciones, de esta manera afianza el avance de obra (Alarcón. Et al, 2011)

Por tanto, la construcción requiere de un alto grado de planificación en todos sus niveles y fases. Se definen criterios específicos que deben ser tomados como compromisos a fin de proteger las unidades de producción de variabilidad y la incertidumbre. Alarcón expone un proceso de aplicación que se muestra en el siguiente esquema (Alarcón. Et at, 2011), seguido de una secuencia de pasos del mismo.

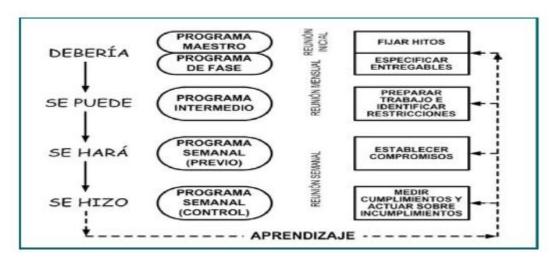


Figura 18: Etapas del Sistema Last Planner

Fuente: Rodríguez Fernández, A. D., Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2011). La gestión de la obra desde la perspectiva del último planificador. Revista de Obras Públicas, 1-9.

Secuencialidad:

- I. Revisión del plan general de la obra, es decir el programa maestro o plan maestro. El plan maestro no debe ser realizado con un excesivo detalle y debe además ser segmentado mediante un planteamiento de hitos.
- II. Elaboración de la programación de fases en caso de proyectos complejos y extensos. Se identifica la fase que se va a desarrollar a continuación se elabora el programa.
- III. Elaboración de la planificación intermedia (lookhead) para un horizonte entre 4 a 6 semanas aproximadamente, realizando los análisis de restricciones con el fin de eliminarlas y de liberar las tareas para su ejecución. Se enmarca dentro del plan maestro.

- IV. Elaboración de la planificación semanal, con la participación de los últimos planificadores; encargados, capataces, subcontratistas, almacenistas, etc. Como parte del inventario de actividades ejecutables obtenido de la planificación intermedia.
- V. Reuniones de los últimos planificadores para verificar el cumplimiento del plan semanal, detectando las causas de no cumplimiento de lo planificado y estableciendo el plan de la siguiente semana.
- VI. Para completar el proceso se recomienda la inclusión de una programación diaria, la cual deberá marcar el paso para la programación semanal.

La confiabilidad del plan se mide en términos de Porcentaje de Plan Completado (PPC), al final de cada semana. Las causas de los fallos de cumplimiento también se investigan semanalmente con el fin de evitarlas en el futuro. La confiabilidad de la planificación está directamente relacionada con la productividad (González Et al., 2008).

Se muestra continuación un Esquema del procedimiento del Sistema Last Planner.

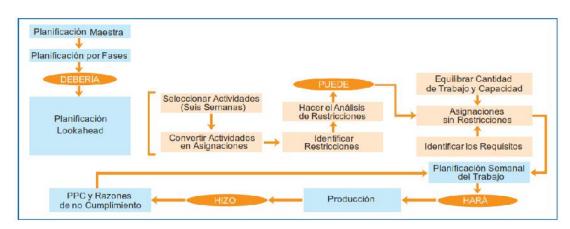
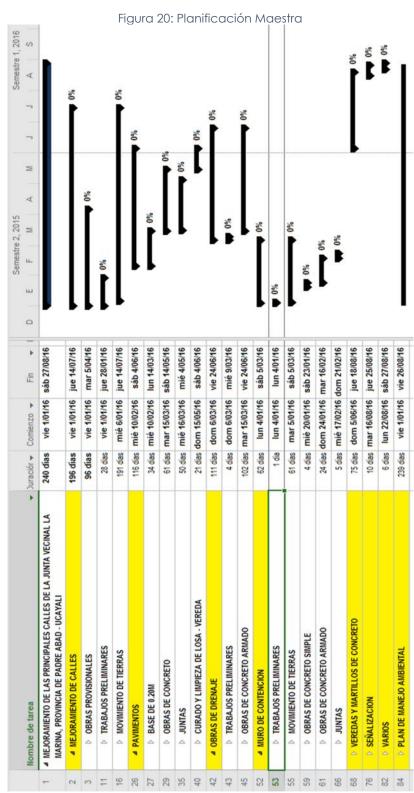


Figura 19: Esquema del procedimiento del Sistema Last Planner

Fuente: Orihuela, P. (2011). El Lean Construction en el Perú. Construcción Integral, 7-9.


4.2.1 PROGRAMACIÓN MAESTRA

Define las tareas principales que "deberían" hacerse. Incorpora todas y cada una de las actividades a realizarse sin incurrir en excesivo detalle estableciendo la relación entre ellas en términos de tiempo y espacio. Con la programación maestra podemos monitorear el avance global de la producción, pues se fijan hitos que son exigidos normalmente por el plazo del proyecto. Es fundamental tener en cuenta lo siguiente:

 Identificar a los responsables del cumplimiento de cada parte del programa e incorporar a los proveedores y/o subcontratistas que intervienen en las principales tareas de la programación, con el fin de definir en qué periodo de la programación deben actuar y contemplar las relaciones e interacciones entre ellos.

- Identificar a los agentes externos de los cuales depende la ejecución de las actividades programadas como administraciones públicas, terceros afectados, etc.
- El plan maestro inicial debe ser objeto de revisiones a partir del aprendizaje obtenido de las planificaciones más detalladas.

Se muestra la Planificación Maestra de la Obra en estudio.

Fuente: Expediente Técnico "Mejoramiento de las Principales Calles de la Junta Vecinal La Marina, Provincia de Padre Abad – Ucayali"

4.2.2 PROGRAMACIÓN POR FASES

En el segundo nivel de la planificación y se hace necesario cuando el proyecto es muy complejo y extenso. Separa en fases el plan maestro a través de hitos y presenta una subdivisión más detallada del plan maestro.

Figura 21: Programación por Hitos

		2017						
	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO
OBRAS PROVISIONALES	01 +			05 +				
PAVIMENTOS		10				04		
OBRAS DE DRENAJE			06			24		
MUROS DE CONTENCIÓN	04 +		05 +					
VEREDAS Y MARTILLOS						05 +		18 +
SEÑALIZACIÓN								16 25 + +
VARIOS								22 27 + +

Fuente: Propia

Como vemos en la programación por hitos tenemos varias fases, para nuestro estudio tomaremos solo las fases de pavimentos, obras de drenaje, muros de contención y veredas y martillo.

El propósito de la programación de fases es producir un plan para completar una fase de trabajo que maximice la generación del valor y que a la vez sea entendido y apoyado por todos los involucrados. El producto debe ser una programación que sirva para plasmar posteriormente el lookahead y la programación semanal.

Ballard (2000) sugiere los siguientes pasos para elaborar una programación de fase.

- a) Definir los trabajos a ser incluidos en la fase, por ejemplo, cimientos, estructura, acabados, etc.
- b) Determinar la fecha de finalización de la fase, además de las más importantes tareas provisionales para las fases previas o posteriores.
- c) Aplicar una duración a cada actividad, sin la contingencia u holgura correspondiente en las estimaciones de duración.
- d) Examinar nuevamente la lógica de la programación obtenida para tratar de acortar la duración.
- e) Determinar la fecha de inicio más pronta posible para el inicio de la fase.
- f) Si hay tiempo de sobra después de comparar el tiempo entre el inicio y la finalización de la duración de las actividades visualizadas en la pared, decidir qué tendrán *buffer* a costa del tiempo adicional. Se debe tener en cuenta lo siguiente:
 - Identificar las actividades que son más frágiles en cuestión de duración.

- Clasificar las actividades frágiles por el grado de incertidumbre.
- Distribuir el tiempo disponible entre las actividades frágiles en el orden de importancia obtenido.
- g) ¿El equipo está de acuerdo en que los buffers disponibles son suficientes para asegurar el cumplimiento de la programación entre hitos? Si no es el caso, replantear o cambiar hitos tantos como sea necesario y posible.
- h) Si hay un exceso de tiempo disponible, decidir si se usará para acelerar la programación o para aumentar la probabilidad de finalización en el tiempo establecido.

Se puede inferir que este mismo procedimiento es aplicable para la elaboración de un plan maestro sin la necesidad de dividirla en fases, siempre y cuando la complejidad del proyecto no nos obligue a ello.

Para poder realizar una buena programación por fases tenemos q saber con claridad las duraciones de cada trabajo a realizar, para poder saber la duración de cada trabajo se necesita saber el rendimiento por partida y la cantidad de obreros. A continuación, se muestra los dos trenes de trabajos planeados en la programación.

Tabla 8: Duración de las Fases de Pavimentos y Veredas Martillos de Concreto

	Tabla 6. Doración de las rases de ravimentos y veredas Mantillos de Concreto						
PARTIDA	DESCRIPCION	UND	CANT.	RENDIMIENTO	CUADRIILA	DURACIÓN EN DIAS	
	PAVIMENTOS						
	BASE E=0.20 m						
	BASE DE0.20 m	M2	12,217.48	500	1mn + 1ro + 1cc	24.4	
	OBRAS DE CONCRETO						
	ENCOFRADO Y DESENCOFRADO LOSA DE CONCRETO	M2	2,026.43	18	1op + 1of	112.6	
	PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M.	M2	12,217.48	100	2op + 1of	122.2	
	ACERO CORRUGADO (BASTONES EN JUNTAS)	KG	1,309.79	250	1op + 1of	5.2	
	ACERO LISO (BASTONES EN JUNTAS)-TRANSVERSALES	KG	5,621.84	250	1op + 1of	22.5	
	UNA DE CONCRETO FC=210 KG/CM2 EN LOSA	М3	102.73	18	2op + 1of	5.7	
	CURADO Y LIMPIEZA DE LOSA - VEREDA						
	TENDIDO DE ARROCERA Y CURADO	M2	16,120.37				
	VEREDA Y MARTILLO DE CONCRETO						
	CONCRETO F'C=175 KG/CM2 BRUNADO DE VEREDA MARTILLO	M2	515.39	100	2op + 1of	5.2	
	CONCRETO F'C=140 KG/CM2 EN VEREDAS E=0.10 M	M2	3387.50	50	2op + 1of	67.7	
	CONCRETO F'C=140 KG/CM2 EN UÑAS DE VEREDAS	М3	53.17	10	1op + 1of	5.3	
	RAMPA DE ACCESOS DE CONCRETO EN VEREDAS	M2	259.30	20	1op + 1of	13.0	
	ENCOFRADO Y DESENCOFRADO DE VEREDA	M2	426.52	27	1op + 1of	15.8	
	JUNTA DE DILATACION EN VEREDA E=5MM H=4"	М	426.52				
	JUNTA DE CONSTRUCCION EN VEREDA E =1"	М	2843.49				
	JUNTA DE DILATACION EN VEREDA E=5MM H=4"	М	426.52	27	10p + 10f		

Fuente: Propia

Tabla 9: Duración de las Fases de Muros de Contención y Obras de Drenaje

PARTIDA	DESCRIPCION	UND	CANT.	RENDIMIENTO	CUADRIILA	DURACIÓN EN DIAS
	MURO DE CONTENCION					
	0BRAS DE CONCRETO SIMPLE					
	SOLADO DE CONCRETO E = 10 CM.	M2	529.6035	70	1op + 1of	7.6
	0BRAS DE CONCRETO ARMADO					
	CONCRETO F'C=210 KG/CM2 EN MURO DE CONTENCION	m3	302.4194	15	1op + 1of	20.2
	ENCOFRADO Y DESENCOFRADO EN MURO DE CONTENCION	M2	1417.76	12	1op + 1of	118.1
	ACERO DE REFUERZO FY=4200 KG/CM2	Kg	4750	250	1op + 1of	19.0
	OBRAS DE DRENAJE					
	CONCRETO ARMADO					
	CONCRETO F'C=210 KG/CM2 EN LOSA FONDO , MUROS Y TECH	M3	1,383.58	13	1op + 1of	106.4
	ENCOFRADO Y DESENCOFRADO DE CANALETAS	m2	9,738.56	18	1op + 1of	541.0
	ACERO DE REFUERZO FY=4200 KG/CM2	kg	64,559.21	250	1op + 1of	258.2

Fuente: Propia

4.2.3 PROGRAMACIÓN INTERMEDIA: Lookahead

Comúnmente se conoce a esta programación como "lookahead", la cual busca profundizar en la planificación de las actividades en un plazo intermedio, con el fin de abordar mayores detalles. Se debe

realizar según las necesidades de cada caso en particular, pudiendo variar de 4 hasta 6 semanas. Lo que busca la programación intermedia es determinar lo que "se puede" hacer.

Se debe tomar en cuenta lo siguiente:

- Se identifican e incorporan los suministros necesarios (y su gestión) para que el proyecto se desarrolle sin complicaciones.
- Se programan las tareas del flujo de producción necesarias para avanzar en el desarrollo de la planificación maestra; tales como inspección, pruebas y ensayos, así como la intervención de agentes externos. Todo lo anterior con la finalidad de que cuando se requiera agregar algo de aquello en la programación no constituyan un foco de retraso.
- Se identifican recursos necesarios y disponibilidad de los mismos,
 las consideraciones en temas de seguridad, las medidas para la
 conservación del medio ambiente y la gestión de residuos.
- Se identifican las restricciones, los responsables de la eliminación de las mismas y plazos para lograrlo.

Para poder realizar una programación intermedia real se tiene a considerar que cada elemento a realizar, por ejemplo, en la programación de muros de contención se tiene a realizar muro por

muro al igual que en pavimentos se tiene q programar calle por calle al igual que las veredas y canaletas. Se presenta las partidas a ejecutar elemento por elemento.

Tabla 10: Partidas de la Fase de Muros de Contención

SOLADO DE CONCRETO E = 10CM.								
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN				
Muro Tipo 1	61.60 m2	70.00 m2	1op + 1of	1 días				
Muro Tipo 2	55.25 m2	70.00 m2	1op + 1of	1 días				
Muro Tipo 3	115.59 m2	70.00 m2	1op + 1of	2 días				
Muro Tipo 4	163.59 m2	70.00 m2	1op + 1of	3 días				
Muro Tipo 5	133.96 m2	70.00 m2	1op + 1of	2 días				
			TOTAL	9 días				

CONCRETO F´C=210KG/CM2 EN MURO DE CONTENCIÓN									
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN					
Muro Tipo 1	59.64 m3	15.00 m3		4 días					
Muro Tipo 2	42.25 m3	15.00 m3	1op + 1of +	3 días					
Muro Tipo 3	72.67 m3	15.00 m3	3 pe + 1mi+	5 días					
Muro Tipo 4	71.13 m3	15.00 m3	1re	5 días					
Muro Tipo 5	56.74 m3	15.00 m3		4 días					
			TOTAL	21 días					

ENCOFRADO Y DESENCOFRADO EN MURO DE CONTENCION							
DESCRIPCIÓN	METRADO	METRADO RENDIMIENTO CUADRILLA					
Muro Tipo 1	196.00 m2	36.00 m2	3op + 3of	6 días			
Muro Tipo 2	162.50 m2	162.50 m2 36.00 m2		5 días			
Muro Tipo 3	336.76 m2 36.00 m2 3op +		3op + 3of	10 días			
Muro Tipo 4	398.30 m2	36.00 m2 3op + 3of		12 días			
Muro Tipo 5	324.20 m2	m2 36.00 m2 3op + 3o		10 días			
			TOTAL	43 días			

ACERO DE REFUERZO FY = 4200 KG/CM2					
DESCRIPCIÓN	METRADO	METRADO RENDIMIENTO CUADRIL			
Muro Tipo 1	3146.23 kg	500.00 kg	2op + 2of	7 días	
Muro Tipo 2	1836.25 kg	500.00 kg	2op + 2of	4 días	
Muro Tipo 3	2675.87 kg	500.00 kg	2op + 2of	6 días	
Muro Tipo 4	3820.62 kg	500.00 kg	2op + 2of	8 días	
Muro Tipo 5	2526.65 kg	500.00 kg	2op + 2of	6 días	
			TOTAL	31 días	

Fuente: Propia

Tabla 11: Partidas de la Fase Pavimentos

BASE DE 0.20 m				
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	716.40 m2	500.00 m2		2 días
CALLE 14	752.40 m2	500.00 m2		2 días
CALLE 17	1528.56 m2	500.00 m2		4 días
CALLE 18	761.76 m2	500.00 m2		2 días
CALLE 20	1216.08 m2	500.00 m2		3 días
CALLE 21	542.52 m2	500.00 m2		2 días
CALLE 22	541.44 m2	500.00 m2	1 mn + 1ro +	2 días
	491.76 m2	1 mn + 1ro +		1 días
	540.00 m2	500.00 m2		2 días
CALLE 23	470.16 m2	500.00 m2		1 días
AV. SAN PEDRO	432.00 m2	500.00 m2		1 días
	250.00 m2	500.00 m2		1 días
	3088.80 m2	500.00 m2		7 días
Jr. Vargas Guerra (Escalinata)	309.60 m2	500.00 m2		1 días
JR. GARCILAZO DE LA VEGA	576.00 m2	500.00 m2		2 días
			TOTAL	33 días

ENCOFRADO Y DESENCOFRADO LOSA DE CONCRETO				
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	118.58 m2	36.00 m2	2op + 2of	4 días
CALLE 14	123.22 m2	2op + 2of	4 días	
CALLE 17	250.46 m2	36.00 m2	2op + 2of	7 días
CALLE 18	125.60 m2	36.00 m2	2op + 2of	4 días
CALLE 20	200.58 m2	36.00 m2	2op + 2of	6 días
CALLE 21	89.39 m2	36.00 m2	2op + 2of	3 días
CALLE 22	89.24 m2	89.24 m2 36.00 m2 2op +		3 días
	80.90 m2	80.90 m2 36.00 m2		3 días
	87.96 m2	87.96 m2 36.00 m2 2op		3 días
CALLE 23	78.26 m2	36.00 m2 2op + 2of		3 días
AV. SAN PEDRO	70.44 m2	36.00 m2	2op + 2of	2 días
	57.92 m2	36.00 m2	2op + 2of	2 días
	507.48 m2 36.00 m2 2op -		2op + 2of	15 días
Jr. Vargas Guerra (Escalinata)	52.00 m2	36.00 m2 2op + 2of		2 días
JR. GARCILAZO DE LA VEGA	94.40 m2	36.00 m2 2op + 2of		3 días
			TOTAL	64 días

PAVIMENTO DE CONCRETO F'C = 210KG/CM2 E=0.20 M.				
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	716.40 m2	129.60 m2		6 días
CALLE 14	752.40 m2	129.60 m2		6 días
CALLE 17	1528.56 m2 129.60 m2		12 días	
CALLE 18	761.76 m2	129.60 m2		6 días
CALLE 20	1216.08 m2	129.60 m2		10 días
CALLE 21	542.52 m2	129.60 m2		5 días
CALLE 22	541.44 m2	129.60 m2	2op + 1of +	5 días
	491.76 m2	491.76 m2 129.60 m2 3pe + 1mi +		4 días
	540.00 m2			5 días
CALLE 23	470.16 m2	129.60 m2		4 días
AV. SAN PEDRO	432.00 m2	129.60 m2		4 días
	250.00 m2	129.60 m2		2 días
	3088.80 m2	129.60 m2		24 días
Jr. Vargas Guerra (Escalinata)	309.60 m2	129.60 m2		3 días
JR. GARCILAZO DE LA VEGA	576.00 m2	129.60 m2	129.60 m2	
			TOTAL	101 días

ACERO CORRUGADO (BASTONES EN JUNTAS)					
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN	
PROL. TUPAC AMARU	81.19 kg	250.00 kg	1op + 1of	1 días	
CALLE 14	85.27 kg	85.27 kg 250.00 kg 1c		1 días	
CALLE 17	173.24 kg	250.00 kg	1op + 1of	1 días	
CALLE 18	86.33 kg	250.00 kg	1op + 1of	1 días	
CALLE 20	137.82 kg	250.00 kg	1op + 1of	1 días	
CALLE 21	61.49 kg	61.49 kg 250.00 kg 1op + 1of		1 días	
CALLE 22	61.36 kg 250.00 kg 1op + 1of		1 días		
	55.73 kg	250.00 kg	1op + 1of	1 días	
	61.20 kg	61.20 kg 250.00 kg 1op +		1 días	
CALLE 23	53.28 kg	250.00 kg 1op + 1of		1 días	
AV. SAN PEDRO	48.96 kg	250.00 kg	1op + 1of	1 días	
	40.80 kg	250.00 kg	1op + 1of	1 días	
	350.06 kg	250.00 kg	1op + 1of	2 días	
Jr. Vargas Guerra (Escalinata)	35.09 kg	250.00 kg	1op + 1of	1 días	
JR. GARCILAZO DE LA VEGA	65.28 kg	250.00 kg	1op + 1of	1 días	
TOTAL	1397.11 kg	250.00 kg		6 días	

ACERO LISO (BASTONES EN JUNTAS) - TRANSVERSALES					
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN	
PROL. TUPAC AMARU	326.71 m2	250.00 kg	1op + 1of	2 días	
CALLE 14	343.13 m2 250.00 kg 1op + 1of		2 días		
CALLE 17	697.09 m2	250.00 kg	1op + 1of	3 días	
CALLE 18	347.39 m2	250.00 kg	1op + 1of	2 días	
CALLE 20	554.58 m2	250.00 kg	1op + 1of	3 días	
CALLE 21	247.41 m2	250.00 kg	1op + 1of	1 días	
CALLE 22	246.92 m2 250.00 kg 1op + 1of		1 días		
	224.26 m2 250.00 kg 1op		1op + 1of	1 días	
	246.26 m2	246.26 m2 250.00 kg 1op + 1of		1 días	
CALLE 23	214.41 m2	250.00 kg	250.00 kg 1op + 1of		
AV. SAN PEDRO	197.01 m2	250.00 kg 1op + 1of		1 días	
	164.18 m2	250.00 kg	1op + 1of	1 días	
	1408.62 m2	250.00 kg	1op + 1of	6 días	
Jr. Vargas Guerra (Escalinata)	141.19 m2	250.00 kg	1op + 1of	1 días	
JR. GARCILAZO DE LA VEGA	262.68 m2	250.00 kg	1op + 1of	2 días	
TOTAL	5621.84 m2	250.00 kg		23 días	

Fuente: Propia

Tabla 12: Partidas de la Fase de Obras de Drenaje

ENCOFRADO Y DESENCOFRADO EN CANALETA					
DESCRIPCIÓN	METRADO	DURACIÓN			
PROL. TUPAC AMARU	680.38 m2	108.00 m2	6op + 6of	7 días	
CALLE 14	780.28 m2	108.00 m2	6op + 6of	8 días	
CALLE 17	1210.35 m2	108.00 m2	6op + 6of	12 días	
CALLE 18	622.92 m2	108.00 m2	6op + 6of	6 días	
CALLE 20	984.51 m2	108.00 m2	6op + 6of	10 días	
CALLE 21	451.08 m2	108.00 m2	6op + 6of	5 días	
CALLE 22	1170.75 m2	1170.75 m2 108.00 m2		11 días	
CALLE 23	353.58 m2	108.00 m2	6op + 6of	4 días	
AV. SAN PEDRO	3222.42 m2	108.00 m2	6op + 6of	30 días	
GARCILAZO DE LA VEGA	262.29 m2 108.00 m2 6op + 6o		6op + 6of	3 días	
			TOTAL	96 días	

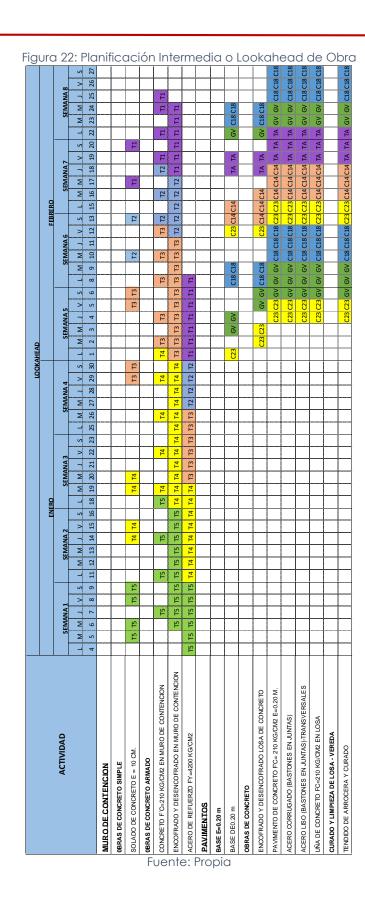

Fuente: Propia

Tabla 13: Partidas de la Fase Veredas y Martillos

	CONCRETO F'C = 140 KG/CM2 EN VEREDAS					
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN		
PROL. TUPAC AMARU	174.89 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	4 días		
CALLE 14	237.22 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	5 días		
CALLE 17	390.96 m2	96.00 m2	4op + 2of + 3pe + 1mi + 1re	5 días		
CALLE 18	177.84 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	4 días		
CALLE 20	295.38 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	7 días		
CALLE 21	166.36 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	4 días		
CALLE 22	473.34 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	10 días		
CALLE 23	89.45 m2	48.00 m2	2op + 1of + 3pe + 1mi + 1re	2 días		
AV. SAN PEDRO	1382.07 m2	96.00 m2	4op + 2of + 3pe + 1mi + 1re	15 días		
			TOTAL	56 días		

Fuente: Propia

Se muestra la planificación realizada para la obra en estudio se consideraron 8 semanas de horizonte por que las primeras 4 semanas solo se realizan muros de contención. Cabe señalar que en las obras se licitan en días calendarios y no en días laborables por lo cual lo mejor es solo considerar los hitos de inicio y fin de cada fase del proyecto, y luego en la programación intermedia programar solo con días laborales como se muestra a continuación.

4.2.3.1 LA PROGRAMACIÓN LINEAL: TRENES DE TRABAJO Y SECTORIZACIÓN

La programación está orientada a lograr volúmenes de producción similares para cada día por cada cuadrilla (Ghio, 2001). Se basa en partir los volúmenes de trabajo en porciones pequeñas para hacerlas más manejables. Es necesario balancear la capacidad de las cuadrillas asignadas de tal manera que los metrados (de fierro, encofrado, concreto, etc.) de una porción de obra sea compatible con otras, esta compatibilidad, que no es más que la partición en metrados aproximadamente iguales, se denomina sectorización. De esta manera se eliminan tiempos de espera y tiempos muertos pues el trabajo se hace repetitivo.

El lean considera holguras que presenta el CPM, del cual más adelante, como pérdidas. En el uso de la programación lineal no se contempla la posibilidad de holguras por tanto cada atraso de una actividad implica el atraso del resto de actividades; sin embargo, Ghio sostiene que el camino para obtener mayores eficiencias es asumir mayores riesgos calculados. Los riesgos y efectos de la variabilidad pueden ser amortiguados por los *buffers*, éstos independizan los procesos de su medio ambiente y de los procesos de que dependen

(Koskela, 2000), permitiendo amortiguar el impacto negativo de la variabilidad sobre una cadena procesos de producción.

A continuación, se muestra un ejemplo de sectorización idealizada en una edificación de 4 plantas.

PRIMER PISO, sectores: A, B, C, D. SEGUNDO PISO, sectores: A, B, C, D. A1 B1 C1 D1 B2 D2 TERCER PISO, sectores: A, B, C, D. CUARTO PISO, sectores: A, B, C, D. **A3 B3 C3** D3 84 **B4** C4 **D4**

Figura 23: Sectorización ejemplo de un edificación de 4 pisos

Fuente: Ghio Castillo, V. (2001). Productividad en Obras de Construcción. Lima: Pontificia Universidad Católica del Perú.

En la figura anterior se observa la sectorización que, para este caso ideal, se podría realizar en un día de trabajo en las partidas de acero, encofrado y concreto en cada tipo de elemento implicado. El tren de trabajo partiría en el día 1 con la colocación de acero vertical dentro de todo el sector A del primer piso, esta cuadrilla pasaría al día siguiente a realizar la misma labor al sector B y a la vez se comenzaría a trabajar el encofrado vertical en el sector anterior. Esta secuencia se

concreto losas

Desencof. De losas

D1

B1

puede apreciar en el formato de programación lineal mostrado a continuación.

Figura 24: Trenes de Trabajo ejemplo de Edificación de 4 pisos

	DIA 1	DIA 2	DIA 3	DIA 4	DIA 5	DIA 6	DIA 7	DIA 8	DIA 9	DIA 10	DIA 11
Fierro vertical	A1	B1	C1	D1	A2	B2	C2	D2	A3	В3	C3
Encofrdo vertical		A1	B1	C1	D1	A2	B2	C2	D2	A3	B3
Concreto vertical	-		A1	B1	C1	D1	A2	B2	C2	D2	A3
Enc. Fondo de vigas				A1	B1	C1	D1	A2	B2	C2	D2
Fierro en vigas					A1	B1	C1	D1	A2	B2	C2
Enc. Costado de viga					A1	B1	C1	D1	A2	B2	
Encofrado de losas	1 =					14	A1	B1	C1	D1	A2
Flerro losas								A1	B1	C1	D1
concreto losas								A1	B1	C1	
Desencof. De losas								,			
	DIA12	DIA 13	DIA14	DIA15	DIA16	DIA17	DIA18	DIA19	DIA20	DIA21	DIA22
Fierro vertical	D3	A4	B4	C4	D4						
Encofrdo vertical	C3	D3	A4	B4	C4	D4					
Concreto vertical	В3	C3	D3	A4	B4	C4	D4				
Enc. Fondo de vigas	A3	В3	C3	D3	A4	B4	C4	D4			
Fierro en vigas	D2	A3	В3	C3	D3	A4	B4	C4	D4		
Enc. Costado de viga	C2	D2	АЗ	В3	C3	D3	A4	B4	C4	D4	
Encofrado de losas	B2	C2	D2	АЗ	В3	C3	D3	A4	B4	C4	D4
Fierro losas	A2	B2	C2	D2	A3	В3	C3	D3	A4	B4	C4

Fuente: Ghio Castillo, V. (2001). Productividad en Obras de Construcción. Lima: Pontificia Universidad Católica del Perú.

D1

D2

A3

B2

D3

D2

A4

B3

En lo expuesto en la figura anterior se ve la aplicación de una edificación de altura, sin embargo, el mismo procedimiento se puede realizar para obras de diferente configuración como obras lineales. Cabe recalcar que la cantidad de trabajo debe ser equivalente en cada sector, es decir todas las cuadrillas deben estar balanceadas para avanzar diariamente el mismo metrado.

110

La idea es que se minimicen los trabajos pico y la variabilidad haciendo que todas las cuadrillas realicen el mismo trabajo desde que ingresan a la obra hasta que se retiran de la misma por el cese de actividades, es decir se buscar que la obra se convierta en una operación repetitiva y que todas las operaciones sean críticas.

4.2.4 PROGRAMACIÓN SEMANAL

Esta es la programación encargada de definir lo que "se hará" durante la semana, tomando en cuenta los resultados de la programación semanal anterior y de lo previsto en la planificación intermedia (lookahead), lo que incluyen las restricciones.

Se debe considerar lo siguiente (Alarcón. Et al, 2011)

- i. Se debe realizar una reunión, al principio o al final de la semana, en la que se realice el análisis del cumplimiento de la planificación vencida (PPC) y posteriormente la planificación de la semana entrante. Según Ghio, se debe realizar el sábado de la semana precedente, ya que considera este día como un buffer.
- ii. La reunión debe albergar a todos los implicados en la ejecución
 (los últimos planificadores); es decir, desde representantes de la

dirección, proveedores y subcontratistas implicados, hasta los jefes de cuadrilla responsables. La duración no deberá ser mayor a dos horas.

- iii. La primera tarea en abordar en la reunión es el análisis del cumplimiento de la planificación vencida, en la que se detectarán las causas de los no cumplimientos de modo que se puedan adoptar las medidas necesarias para corregir los desajustes que se puedan presentar en el lookahead a raíz de esto. Ya que antes se mencionó que el aprendizaje es una parte importante del proceso, es importante registrar las medidas correctivas una vez detectadas las causas de no cumplimiento en forma de lecciones aprendidas.
- iv. Se deben establecer los trabajos que "se harán" durante la semana entrante, en función de los resultados de la tarea anterior: cumplimiento de la programación finalizada, lo previsto en el lookahead, restricciones y eliminadas y el inventario de trabajo ejecutable.

En la figura se observa un formato de programación semanal el cual contiene un porcentaje de confiabilidad producto del análisis de

cumplimiento de las tareas programadas, este último analiza las causas de incumplimiento y muestra las medidas correctivas.

Figura 25: Modelo de Programación Semanal.

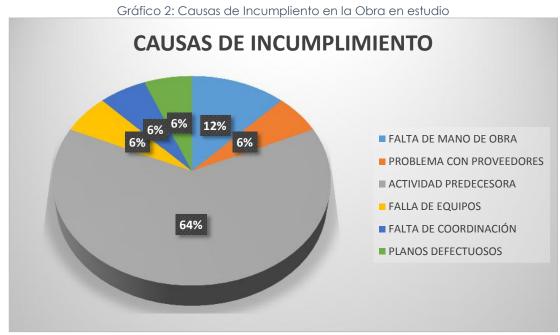
nmoenio		GESTI	FORM ON D				s							Revisión: 2
	AN SE	MANAL Y	ANA	IS	IS I	DE C	ONE	TAB	ILID	AD				Fecha: kn - 2013
							-							Pagina: 1 de 1
CODIGO PROYECTO: 1301	NO	MBRE PROYE	сто	:				AL	LEG	RA			AREA /FRENTE:	3er y 4to nivel
DESCRIPCION DE LA ACTIVIDAD DE	Name of Street			750			NA 23		H 242				ANALISIS DE CUMPLIMI	ENTO
03/06/2013 AL 08/06/2013	UND	CANTIDAD	D	L	М	М)	٧	S	SI	NO	TIPO	CAUSAS DE INCUMPLIMIENTO	MEDIDA CORRECTIVA
Habilitacion y Colocacion de Acero	icg	3265.221	Н	31	4A	48	AC.	4D		x	\vdash			
Encofrado de Verticales	m2	251.130		30	3E	4A	48	4C		×			Š. T	
Concreto Verticales	m3	20.820		30	3E	4A	48	4E		×				
Encofrado de Fondo de Vigas Y Una Ca	m2	66.040		30	10	3£	4A	F48		×				
Encofrado de Costado de Viga Y Losa	m2	218.100		38	10	30	36	44		×				
Habilitacion y Colocacion de Acero	kg	3940.347		3A	18	30	10	-		×				
Concreto Horizontales	m3	45.320	Н	26	3A	38	30	30			×		se acabó el cemento martes	buffer de inventario en ce
Habilitacion y Colocacion de IIEE	glb	1.000		3A	18	30	30	×			х		retraso de encofrado losa 30	más triplay para encofrad
Habilitacion y Colocacion de IISS	glh	1.000	Н	3.6	18	ac	10	×		x				
Tarrajeo cieloraso	m2	76.170					SIA	\$18		×				
Tarrajeo Vigas	m2	16,500	Н	_	H			SIA	-	X				
ANALISIS DE LA CONFIABILII	AD /	EN 041								-	18%			
MINITISTS DE LA CONFIABILIT	עאי (EI 70)								82	2%			

Fuente: Orihuela, P. (2011). El Lean Construction en el Perú. Construcción Integral, 7-9.

Por otro lado, es un aspecto importante el compromiso que deben asumir todos los participantes del proyecto el cual debe estar evidenciado por un sistema de visibilidad publica de los resultados alcanzados semanalmente sean resultados buenos o malos. Este sistema de transparencia refuerza el compromiso, sobre todo el de los últimos planificadores. Vemos en la Figura 26 la programación para la primera semana de obra.

Figura 26: Programación Semanal de la Obra en Estudio

		Е	ENERO	C							R	RESTRICCIONES	53			
ACTIVIDAD		σ,	SEM 1	1		Š	JND Metrado	trado	,	Actividad		Mano de	-;V		Condiciones LIBERADO?	LIBERADO?
	٦ ١	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	<i>-</i>	S			_	nrormacion	normacion Precedente	ESpacio	Obra	Material	ednibo		
MURO DE CONTENCION																
0BRAS DE CONCRETO SIMPLE			\vdash													
SOLADO DE CONCRETO E = 10 CM.	Ľ	T5 T5		T5	75		133.	133.96 m2	`>	>	>	`>	>	\ \ \	`>	IS
OBRAS DE CONCRETO ARMADO		 			_											
CONCRETO F'C=210 KG/CN/2 BUMURO DE CONTENCION			万				15.(15.00 m3	>	`>	`>	`>	>	,	`	SI
BICOFRADO Y DESENCOFRADO EN MURO DE CONTENCION		T.	5	7	T.		129.	129.68 m2	>	`^	>	>	>	>	`	SI
ACERO DE REFUERZO FY=4200 KG/CM2	T5 T5 T5 T5 T5 T5	5 7	 T		75		2526	2526.65 kg	`>	`>	>	`>	>	`>	`>	IS


4.2.4.1 PORCENTAJE DE PLAN COMPLETADO (PPC)

Al final de cada semana se evalúa el porcentaje de cumplimiento de las actividades planeadas en la programación semanal, éste se calcula como la división entre el número de actividades programadas cumplidas al 100% entre el número de actividades programadas totales, se muestra los PPCs de la Obra en estudio de las 7 últimas semanas de ejecución de obra.

Fuente: Propia

Este indicador debe estar acompañado por un listado de las razones por las cuales ciertas actividades planificadas no fueron cumplidas, con esta combinación se puede atacar las causas del problema y eliminarlas de raíz. Se muestra las causas de de imcumpliento de las 7 últimas semanas de ejecución de obra. En el Anexo B se muestran los PPC de la obra en estudio.

Fuente: Propia

4.2.5 PROGRAMACIÓN DIARIA

Las programaciones diarias están diseñadas para balancear la capacidad de producción real de las cuadrillas existentes con la cantidad de trabajo que se les asigna (Ghio, 2001). Es decir, se busca que las cuadrillas cumplan con una asignación razonable y esto nos garantice el cumplimiento de la programación semanal.

Lo idóneo es completar la capacidad de producción óptima de la cuadrilla en la asignación, esto nos permite reducir y en el mejor de los casos eliminar las pérdidas relacionadas directamente con la producción diaria de cada cuadrilla.

Según Virgilio Ghio (2001), la programación diaria debe incluir:

- Todas las actividades que se realizan durante el día, incluir al responsable de cada cuadrilla.
- Cantidad de obreros por cuadrilla básica, así como la cantidad de cuadrillas básicas.
- El metrado de cada actividad a realizarse.
- La velocidad de producción de cada cuadrilla.
- A partir de los valores anteriores se calcula el rendimiento de cada actividad.

Estudios realizados para medir el impacto del uso de Last Planner arrojaron algunos aspectos cualitativos (Alarcón, 2008). En una realidad similar a la nuestra podemos esperar los siguientes resultados:

• Mejora en la gestión y control del proyecto.

- Mayor involucramiento de mandos medios gracias a un papel más activo en la gestión del proyecto y su mayor compromiso con la planificación.
- Disminución de pedidos urgentes e imprevistos.
- Mayor productividad de los procesos, aunque en algunos casos ésta no pueda ser medida directamente.
- Menores plazos de ejecución de obra.

En el escenario de la implementación global del sistema Last Planner se plantea seguir las recomendaciones que Serpell (1993) nos entrega, las cuales han sido alineadas con los conceptos del sistema:

- Desarrollar y adaptar herramientas convenientemente.
- Aprovechar la estandarización y repetición mediante el uso efectivo del recurso humano.
- Evaluar permanentemente nuevas alternativas de construcción.
 Innovar.
- Usar métodos y materiales apropiadamente, teniendo en cuenta las características del proyecto.
- Ahondar en detalle de planificación (en el nivel adecuado) para evitar los cuellos de botella.

- Estandarizar las operaciones de construcción y aprovechar la repetitividad. Es decir, sectorizar y crear trenes de producción.
- Estudiar anticipadamente los métodos a utilizar en operaciones complicadas o difíciles.
- Controlar y apoyar con más énfasis aquellos trabajos altamente sensibles a problemas de calidad.

Figura 27: Programación diaria de la Obra en Estudio

		Miercoles 6 de Enero					
ACTIVIDAD	METRADO	UBICACIÓN	n° obr.	n° cuad.	tot. Obr.	horario	CUMPL
CONCRETO SIMPLE							
Solado de Concreto E=10CM	34.43 m2	Calle 22 (36.00ml) + Calle 17 (4.50ml)	1op + 1of	1	2	8:00 - 12:00	
ENCOFRADO							
Encofrado de Muro de Contención	40.00 m2	Calle 17 (20.00 ml)	3op + 3of	1	6	8:00 -17:00	
ACERO CORRUGADO							
Habilitado de Acero fy=4200kg/cm2	500.00 kg	Tipico para el muro Tipo V	2op + 2of	1	4	8:00 -17:00	

Fuente: Propia.

4.3 OPTIMIZACIÓN DE PROCESOS

Se realizó la medición de la Productividad en la Obra con una herramienta de la Filosofía Lean Construction llamada Cartas Balance, esta herramienta nos permite analizar cada partida de nuestro sistema a detalle y obtener resultados que nos lleven hacia una optimización en la productividad y por ende en costo.

En la mayoría de obras la única forma de saber cuánto se ha producido es mediante las valorizaciones que se realizan cada mes,

esta forma de llevar la productividad en una obra es demasiado general y no permite realizar optimizaciones, por qué no se observan los materiales utilizados ni las horas hombres utilizadas para realizar dichos trabajos. Se muestra las partidas de Pavimentos de una valorización de la obra en estudio.

Figura 28: Valorización de Obra

				VAL	ORIZA	CION	N° 12	2 - El	NERC	2017				
Ub-s	"MEJORAMIENTO DE LAS PRINCIPALES CALLES D LA MARINA - PROVINCIA DE PADRE ABAD - REC		100000000000000000000000000000000000000											
Janualeta	CURSURUR LA MAHINA				HESIJENTE	NIA CHIJU.	ALEJANUHU U	ELU WARRY		FLYAUELES.	UJK:	270	DAG	
Diente Ing-r	SUD NEGION DE PADRE ADAD JAVYTA MARINA	Distribut	PANEE AFAIN		FFCHA F RAS CONTRATO:		LP.GSRPA.A			FER OFFI FIDNTO COM	razo:	CWCW2016 4,55 ,89949	A	31,01,5,12
Item	Descripción	Unided	Menado	Ггесо	Persiel	ANTER METRACO	FINE MONTO		40 METFADO	TIKI MENTO		ACHMI METRADO	ADD Monito	
107 TE	ELIMINACIONDE MATERIALE POEDENTE PAYIMENTOS	m3	14,001.38	10 47	146,574 13	14,001.35	146,594.14	100.00				14,001.35	148,594.14	100.00
lau:	BASE DE 1/20M													
10.10.50	EASE DE 3.20 V.	m ²	12,217.48	9.47	115,689.54	12,217.48	115,699.54	100.00				12,217.48	115,699.54	100.00
12.02.0 12.02.0	THE CONTRACTOR OF THE CONTRACT	112	2.026 43	21.09	50 022.56	1,938.93	47,860.71	95.58	53.20	1,313.51	2.63	1,992.03	49,183.22	98.30
23,202	PASIMENTO DE COMOBETO PO: 200KB/CM2 Exité M	m2	12,217.48	65.52	800,489,29	11 583 05	758,577.29	94.09	190.32	11,814.95	1.62	11,790 48	772,512.25	96.51
2.0200	ACERO CORRUGADO (BASTONES ETJULNITAE)	lag	1,397 11	5.04	7 041 43	1,360.39	6,856 37	97.37	20.40	102.82	1/6	1,380.79	6,959 18	98.83
727284 727285	ACERUL SU JERSTURES EN JUNIOSI HONVERSALES INA DE COMPOSED DE 2004 DESERVERNI DE A	kg mil	5,621 84 102 73	5.27 C00.85	35,248,94 33,998,49	5,477 37 100.66	34,343 11 33,313.43	97.43 97.39	78.87		1.40	5,558 17 101.53	34,837 19 33,601.35	98.83
51.3	JUNTAS		land, o	1000	1000 11000	and the second	20 Sales (1.20)		2000		- Lorent	- Contract		Was a
12 CO 01	JUNTA DE CONSTRUCCION CON TEMAOPORT	m	513 65	5.90	2,876,44	495.15	2,772.84	96,40	12.50		2,43	507.65	2,342 84	98.83
C2.C3 02 C2.C3 03	UNIA DE CUR HACCION (L-11 P21 UNIA DE DI ATACOM (E-11 P-2)	m m	2,054 50	3.67 4.91	7,951,22 5,013,99	2,001 13 995.79	7,744,37 4,869,33	97.40 96.90	29.45 19.50		1.43	2,080.58 1,015.29	7,258.34 4,905.08	98.83 98.83
121.304	.UNTA LONGITLEMAL (E-11++1)	m	1,712.15	4.34	7,430.73	1,667.15	7,235.43	97.37	25.00	105.50	1./6	1,692.15	7,3/3 93	98.83

Fuente: Propia

El objetivo principal de las cartas balance es optimizar los procesos, pero hay que hacer un análisis previo para encontrar los procesos en los que el uso de esta herramienta sea más beneficioso, se recomienda realizarlo en partidas más significativas (Concreto, Encofrado, Acero, Etc.)

En nuestra obra en estudio analizamos la partida de vaciado de concreto en losa de pavimento por su incidencia en el presupuesto.

VACIADO DE CONCRETO EN LOSA

Se decidió analizar esta partida por tener una incidencia en el presupuesto de obra y por ende al optimizar esta partida podríamos obtener un impacto significativo en el costo de obra.

DATOS GENERALES

Analizando la partida se pudo dividir las actividades que la conforman en cada grupo de trabajos (TP, TC y TNC) quedando distribuidas de la siguiente manera.

Figura 29: Distribución de Trabajos de la Partida Vaciado de Concreto

Trabaj	o Productivo		Trabajo Contributrio		Trabajo No Contributorio
1 Manejo	de Chute o Manguera	1	Instruciones	1	Esperas y Descansos
2 Vibrado	de Concreto	2	Lampear	2	Simulación de Trabajo
3 Acabac	lo de Losa	3	Traslado de Chute	3	Viajes
4 Reglea	ır	4	Nivel	_	
	•	5	Traslado de Materiales		

Fuente: Propia

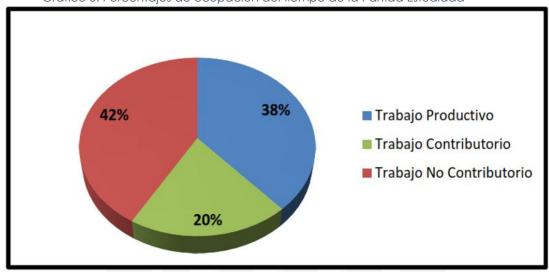

Las mediciones se realizaron sobre una cuadrilla conformada por 7 personas (2 operarios, 1 oficial y 4 ayudantes), la cual se detalla a continuación.

Figura 30: Trabajadores de la cuadrilla estudiada

	VACIADO DE	CONCRETO	
CARGO	NOMBRE	CARGO	NOMBRE
AYUDANTE (chute o manguera)	Demetrio Zambrano	OFICIAL (vibrado)	Luis Velasquez
AYUDANTE (lampa)	Kevin Silva	OPERARIO (regla)	Max Noteno
AYUDANTE (lampa)	Hortencio Rondoy	OPERARIO (regla acabado)	Elder Alania
AYUDANTE (lampa)	Joel Romero		

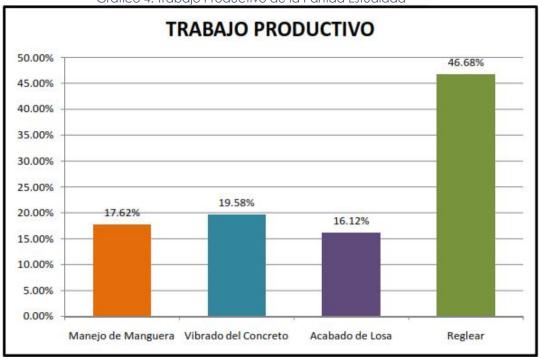

RESULTADOS GENERALES

Gráfico 3: Porcentajes de ocupación del tiempo de la Partida Estudiada

Fuente: Propia

Gráfico 4: Trabajo Productivo de la Partida Estudiada

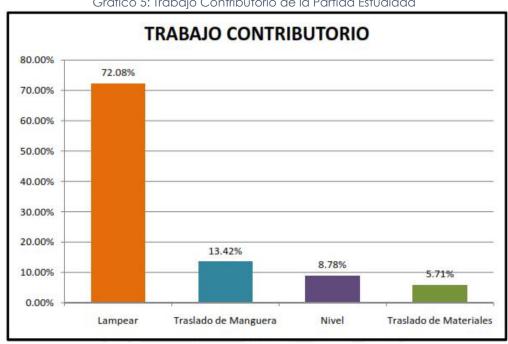
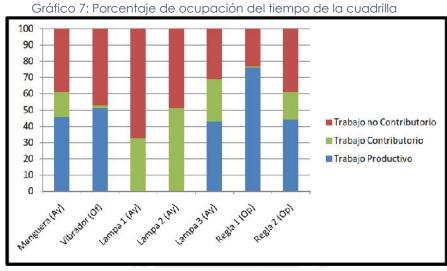


Gráfico 5: Trabajo Contributorio de la Partida Estudiada

Fuente: Propia


Gráfico 6: Trabajo No Contributorio de la Partida Estudiada

A nivel de toda la partida se obtuvieron valores que nos daban evidencia clara de que se tenía mucho para optimizar en esta partida, en especial por obtener un nivel de Trabajo no contributorio del 42%, siendo más de la tercera parte del tiempo total que son netamente perdidas.

Una vez identificado que el problema está en el porcentaje elevado de Trabajo no Contributorio se analizan los resultados individuales del nivel general de actividades buscando la manera correcta para optimizar el proceso.

RESULTADOS INDIVIDUALES:

Se muestra los resultados obtenidos de las mediciones para cada trabajador.

CONCLUSIONES:

Observando los resultados individuales de los obreros que integran la cuadrilla analizada se puede observar que todos los obreros presentan porcentajes altos de Trabajos no Contributorios (TNC), lo cual es un indicador de que existen factores externos que influyen negativamente en la productividad de la cuadrilla. El factor más influyente que se observó para esta partida es la demora que existe en reanudar el vaciado cuando el mixer va a cargar concreto, lo cual origina esperas de toda la cuadrilla para continuar con el vaciado.

Se puede apreciar que 5 de los 7 obreros presentan un alto nivel de trabajo productivo que va desde el 43% hasta el 76%, mientras que 2 ayudantes tienen 0% de Trabajo Productivo. Los 5 obreros que presentan trabajos productivos también tienen un alto porcentaje de TNC (del 23% al 47%) por lo que a pesar de tener un alto nivel de TP se tiene que distribuir mejor el trabajo entre estas personas. Sin embargo, el punto crítico de la partida lo tenemos en los 2 obreros restantes que poseen porcentajes de TNC del 49% y 67%, lo cual demuestra que la cuadrilla está claramente sobredimensionada.

Se muestra una representación del vaciado convencional.

Vaciador y Vibrador
Lamperos
Acabado de losa

Figura 31: Procedimiento de vaciado de losa de pavimento Vaciado Convencional

Fuente: Propia

Analizando estos resultados se concluye que se podría optimizar la partida reduciendo el personal que no aporta valor y que el mismo trabajo podría ser realizado por 5 personas con un procedimiento y los recursos adecuados o por 6 personas como máximo en otras condiciones. Con esto se logró incrementar considerablemente la productividad ya que se mantenía la producción diaria disminuyendo las horas hombres utilizadas.

Se optó por la opción de solo utilizar 5 obreros, pero se cambió la forma de vaciar en vez de esparcir todo el concreto en del mixer se vaccea por franjas ya que nos reduce la necesidad de lampeadores de esparcir el concreto dejando el frente casi listo para los regleadores, asimismo por el frente de trabajo se necesitarán menos hombres para el acabado de losa y se realiza la partida de manera mucho más eficiente. En la siguiente imagen se

ilustra el procedimiento mencionado y la disposición de los integrantes de la cuadrilla durante el vaciado.

Figura 32: Disposición de obreros después de la optimización Vaciado Por Franjas Vaciador y Vibrador Lamperos Acabado de losa Lampa / Acabado

Fuente: Propia

Figura 33: Vaciado por franjas de losa de pavimento

CAPÍTULO V

5. CONCLUSIONES

En esta última etapa de la tesis, alcanzaremos las conclusiones que se ha podido obtener:

Del Proceso de Implementación

Se comprobó durante la implementación, que el factor más importante para lograr una implementación exitosa de la Filosofía Lean Construction, es el compromiso y colaboración de los miembros del equipo de obra y también que este compromiso sea asumido por la misma empresa constructora.

De Sistema Last Planner

Mediante la Aplicación del Sistema Last Planner se comprobó que se genera una programación semanal confiable (ver figura 26), ya que previamente se realiza la liberación de restricciones lo cual nos aseguramos con una buena probabilidad que la actividad será ejecutada. De esta manera se cumple con uno de los principios del Lean Constuction que es la reducción de la variabilidad en los procesos.

- Debemos tener en claro que el Sistema Last Planner es una herramienta que se utiliza para estabilizar el flujo de trabajo, siendo este otro de los principios del Lean Construction. Esta estabilización del flujo lo podemos ver al obtener la retroalimentación que nos brinda la recopilación de las Causas de No Cumplimiento (Ver Gráfico N° 02) lo cual genera una mejora al sistema debido a que no podemos detectar las partes que están fallando.
- Como todo sistema, el Sistema Last Planner tiene algunas desventajas como es el seguimiento a detalle que debe tenerse convirtiéndose esto en más horas de trabajo para los encargados de la producción y también de requerir de incentivos, como bonos de Productividad, porque de no existir estos incentivos, el personal obrero se desmotiva.

Lo que se puede destacar de la implementación del Last Planner, no sólo es el aprender los principios de la nueva filosofía orientada hacia la administración de la producción denominada Lean Construction o el conocer la teoría y aplicar todos los elementos que conforman el

Last Planner System, sino es ver que al implementar un sistema de planificación hemos podido identificar otros aspectos tales como desafíos con el factor humano de la empresa, problemáticas organizacionales, necesidad de esquematizar y ordenar los procesos de acuerdo al tipo de proyecto a estudiar, tomar en cuenta los controles de calidad como parte de la planificación, etc. Aspectos que se tuvieron que ir solucionando en el camino de la implementación, lo cual nos lleva a pensar que un sistema de planificación forma parte de un sistema de gestión integral para una empresa en donde no sólo está involucrada la parte técnica, sino también la parte administrativa, de calidad, de seguridad, etc.

Por ello la implementación de un sistema de este tipo favorece a tener una visión más amplia de lo que es un proyecto como conjunto y de los requerimientos necesarios para que sea exitoso. Y una parte de lograr este éxito se consigue mediante una adecuada planificación siendo esta confiable y tomando en cuenta como punto importante la retroalimentación continua, la cual se puede lograr mediante el uso del Sistema Last Planner.

Comparativo entre la Metodología Lean Construction y la Metodología PMI (sistema tradicional)

- El enfoque PMI tiene una visión de Planificación Macro, mientras que el Enfoque Lean va más allá partiendo de la Programación Maestra (Diagrama Gantt) desglosándolo primero en un Lookahead que como vimos es una programación con un horizonte de 4 a 6 semanas, una programación semanal y por ultimo diaria teniendo en cuenta las restricciones que pueda tener cada actividad al momento de ejecutarse.
- Los resultados obtenidos en las mediciones de productividad de la Partida Concreto de Losa de Pavimento f´c=210 kg/cm2 con 7 obreros en la cuadrilla son TP = 38%, TC = 20% y TNC = 41% (ver Gráfico 02), luego de aplicar la optimización de procesos se reduce el número de obreros a 5 personas ya que se observó que el TNC era muy elevada. Generando un 25% de ahorro en el costo de Mano de Obra.
- Es necesario realizar las mediciones de productividad con las cartas balance debido a que el dimensionamiento de cuadrilla para los proyectos son teóricos, pero no sabemos con certeza si son los rendimientos óptimos, además las condiciones en campo

siempre son distintas y por lo tanto también se debería hacer un análisis en campo para replantear la cuadrilla en una etapa temprana del proyecto.

BIBLIOGRAFÍA

- ✓ Alafaro Rodriguez, C. H. (2012). Metodología de Investigación Científica Aplicado a la Ingeniería. Proyecto de Investigación. Universidad Nacional del Callao, Lima.
- ✓ Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2009). Un nuevo enfoque en la gestión: la construcción sin pérdidas. Revista de Obras Públicas, 45-52.
- ✓ Arboleda Lopez, S. A. (2014). Análisis de Productividad, Rendimientos y Consumo de Mano de Obra en Procesos Constructivos, Elemento Fundamental en la Planeación (tesis de maestría). Universidad Nacional de Colombia, Medellín, Colombia.
- ✓ CPLCI. (29 de Junio de 2016). Leanperu.com.pe. Obtenido de http://www.leanperu.com.pe/
- ✓ Ghio Castillo, V. (2001). Productividad en Obras de Construcción. Lima: Pontificia Universidad Católica del Perú.
- ✓ Glenn Ballard, H. (2000). The Last Planner System of System of Production Control (tesis doctoral). Universidad of Birminghan, Birminghan, Inglaterra.
- ✓ Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2014). Metodología de la Investigación (Sexta ed.). México: McGraw-Hill.

- ✓ Ibarra Gómez, L. I. (2011). Lean Construction (tesis de pregrado).
 Universidad Nacional Autónoma de México, Mexico, DF.
- ✓ IGLC. (29 de Junio de 2016). IGLC.net Home Page. Obtenido de http://www.iglc.net/
- ✓ Koskela, L. (1992). Application of the New Production Philosophy to Construction. Technical Report #72. Stanford, California.
- ✓ LCI. (29 de Junio de 2016). Leanconstruction.org. Obtenido de http://www.leanconstruction.org
- ✓ Orihuela, P. (2011). El Lean Construction en el Perú. Construcción Integral, 7-9.
- ✓ Orihuela, P., & Ulloa, K. (2011). La Planificación de las Obras y el Sistema Last Planner. Construcción Integral, 9-12.
- ✓ Porras Díaz, H., Sánchez Rivera, O. G., & Galvis Guerra, J. A. (2014). Filosofía Lean Construction para la gestión de proyectos de construcción: una revisón actual. AVANCES Investigación en Ingeniería, 32-53.
- ✓ Rodríguez Castillejo, W., & Valdez Cáceres, D. (2012). Mejoramiento de la Productividad en la Construcción de Obras. Lima: Culturabierta E.I.R.L.
- ✓ Rodríguez Fernández, A. D., Alarcón Cárdenas, L. F., & Pellicer Armiñana, E. (2011). La gestión de la obra desde la perspectiva del último planificador. Revista de Obras Públicas, 1-9.
- ✓ Rodríguez Llontop, Y. (2009). Allternativas para Mejorar la Productividad en el Sector Construcción. XVII Congreso Nacional de Ingeniería Civil. Chiclayo: ICG.

- ✓ Román Cabrera, B. H. (2011). Aplicación de las Metodologías Construcción sin Pérdidas e Innovación Tecnológica para la Mejora de la Productividad en Procesos de Pavimentación (tesis de pregrado). Universidad Nacional de Ingenieria, Lima.
- ✓ Wodalski, M. J., Thompson, B. P., Whited, G., & Hanna, A. S. (2011). Applying Lean Techniques in the Delivery of Transportation Infrastructure Construction Projects. CFIRE Technical Report No. 03-2011, 41-45.
- ✓ Yoza Lévano, A. (2012). El Último Planificador en Obras de Saneamiento. Revista Costos.

ANEXOS

- ANEXO A: Programación Last Planer de Obra.
- ANEXO B: Programación Lookahead y PPC de Obra.
- ANEXO C: Carta Balance de la Partida Vaciado de Concreto
- ANEXO D: Planos de Obra "Mejoramiento de las Principales
 Calles de la Junta Vecinal La Marina, Provincia de Padre abad –
 Ucayali"

ANEXO A: PROGRAMACIÓN LAST PLANNER DE OBRA

LOOKAHEAD DE 8 SEMANAS

																			L	ООКА	HEA)																	
										EN	IERO																			FEBR	≀ERO								
ACTIVIDAD		SI	MAI	NA 1				SEMA	NA 2			SE	EMAN	A 3			SEN	/ANA	4			SEN	/ANA	4 5			SEI	MAN	4 6			SE	MAN	A 7			S	EMAN	NA 8
	L	М	М	J	v s	5 L	_ M	М	J	v s	L	M	М .	, ,	v s	L	M	1 J	V	S	L	M	ΛJ	V	S	L	M	и I	V	S	L	M	и	, ,	S	L	М	М	J V S
	4	5	6	7	8 9	1	1 12	13	14	15 16	18	19	20 2	1 2	22 23	25	26 2	7 28	29	30	1	2 3	3 4	5	6	8	9 1	.0 1	1 12	13	15	16 1	.7 1	8 1	9 20) 22	23	24	25 26 2
MURO DE CONTENCION																																							
0BRAS DE CONCRETO SIMPLE																																							
SOLADO DE CONCRETO E = 10 CM.		T5	T5		T5 T.	5			T4	T4		T4	T4						Т3	Т3				Т3	T3		Т	2		T2		7	Г1		T1				
0BRAS DE CONCRETO ARMADO																																							
CONCRETO F'C=210 KG/CM2 EN MURO DE CONTENCION				T5		T!	5		T5		T5	T4		T	Г4		T4		T4		T4	T3	T3	3		Т3	Т	3	Т3	T2		T2	Т	2 T	1	T1		T1 -	Т1
ENCOFRADO Y DESENCOFRADO EN MURO DE CONTENCION			T5	T5 .	T5 T	5 T:	5 T5	T5	T5	T5 T5	T4	T4	T4 T	4 1	Г4 Т4	T4	T4 T	4 T4	T4	T4	Т3	T3 T	3 T3	3 T3	T3	Т3	Т3 Т	3 T	3 T2	T2	T2	T2 T	2 T	1 T	1 T1	. T1	T1	T1	
ACERO DE REFUERZO FY=4200 KG/CM2	T5	T5	T5	T5 .	T5 T.	5 T	4 T4	T4	T4	T4 T4	T4	T4	T3 T	3 1	Т3 Т3	Т3	T3 T	2 T2	T2	T2	T1	T1 T	1 T1	1 T1	. T1	T1													
PAVIMENTOS																																							
BASE E=0.20 m																																							
BASE DE0.20 m																					<mark>C23</mark>	G	V G\	V		C18	C18		C23	C14	C14		Т	A TA	A	GV	C18	C18	
OBRAS DE CONCRETO																																							
ENCOFRADO Y DESENCOFRADO LOSA DE CONCRETO																					C	C23 C2	<mark>23</mark>	G۱	/ GV	C18	C18		C23	C14	C14	C14	Т	A TA	A	GV	C18	C18	
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M.																							C2	3 C2	GV	GV	GV C	18 C1	.8 C18	C23	C23	C14 C	14 C	14 T	A TA	TA	GV	GV C	C18 C18 C1
ACERO CORRUGADO (BASTONES EN JUNTAS)																							C2	.3 C2	3 GV	GV	GV C	18 C1	.8 C18	C23	C23	C14 C	14 C	14 T	A TA	ТА	GV	GV C	C18 C18 C1
ACERO LISO (BASTONES EN JUNTAS)-TRANSVERSALES																							C2	3 C2	3 GV	GV	GV C	18 C1	.8 C18	C23	C23	C14 C	14 C	14 T	A TA	ТА	GV	GV C	C18 C18 C1
UÑA DE CONCRETO FC=210 KG/CM2 EN LOSA																							C2	3 C2	3 GV	GV	GV C	18 C1	.8 C18	C23	C23	C14 C	14 C	14 T	A TA	TA	GV	GV C	C18 C18 C1
CURADO Y LIMPIEZA DE LOSA - VEREDA																																							
TENDIDO DE ARROCERA Y CURADO																							C2	.3 C2	GV	GV	GV C	18 C1	.8 C18	C23	C23	C14 C	14 C	14 T	A TA	TA	GV	GV C	C18 C18 C1

RENDIMIENTOS DE LA FASE DE MUROS DE CONTENCIÓN

	SOLADO DE CONCRE	TO E = 10CM.		
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
Muro Tipo 1	61.60 m2	70.00 m2	1op + 1of	1 días
Muro Tipo 2	55.25 m2	70.00 m2	1op + 1of	1 días
Muro Tipo 3	115.59 m2	70.00 m2	1op + 1of	2 días
Muro Tipo 4	163.59 m2	70.00 m2	1op + 1of	3 días
Muro Tipo 5	133.96 m2	70.00 m2	1op + 1of	2 días
			TOTAL	9 días

CONCR	ETO F'C=210KG/CM2 EN	MURO DE CONTEN	CIÓN	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
Muro Tipo 1	59.64 m3	15.00 m3		4 días
Muro Tipo 2	42.25 m3	15.00 m3	1op + 1of + 3	3 días
Muro Tipo 3	72.67 m3	15.00 m3	pe + 1mi+	5 días
Muro Tipo 4	71.13 m3	15.00 m3	1re	5 días
Muro Tipo 5	56.74 m3	15.00 m3		4 días
	-	-	TOTAL	21 días

ENCOFRA	ADO Y DESENCOFRADO I	N MURO DE CONTE	NCION	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
Muro Tipo 1	196.00 m2	36.00 m2	3op + 3of	6 días
Muro Tipo 2	162.50 m2	36.00 m2	3op + 3of	5 días
Muro Tipo 3	336.76 m2	36.00 m2	3op + 3of	10 días
Muro Tipo 4	398.30 m2	36.00 m2	3op + 3of	12 días
Muro Tipo 5	324.20 m2	36.00 m2	3op + 3of	10 días
			TOTAL	43 días

	ACERO DE REFUERZO I	FY = 4200KG/CM2		
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
Muro Tipo 1	3146.23 kg	500.00 kg	2op + 2of	7 días
Muro Tipo 2	1836.25 kg	500.00 kg	2op + 2of	4 días
Muro Tipo 3	2675.87 kg	500.00 kg	2op + 2of	6 días
Muro Tipo 4	3820.62 kg	500.00 kg	2op + 2of	8 días
Muro Tipo 5	2526.65 kg	500.00 kg	2op + 2of	6 días
			TOTAL	31 días

RENDIMIENTOS DE LA FASE DE PAVIMENTOS

	BASE DE 0	.20 m	•	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	716.40 m2	500.00 m2		2 días
CALLE 14	752.40 m2	500.00 m2	Ī	2 días
CALLE 17	1528.56 m2	500.00 m2	1	4 días
CALLE 18	761.76 m2	500.00 m2	1	2 días
CALLE 20	1216.08 m2	500.00 m2	1	3 días
CALLE 21	542.52 m2	500.00 m2	1	2 días
CALLE 22	541.44 m2	500.00 m2	1 mn + 1ro +	2 días
	491.76 m2	500.00 m2	1cc	1 días
	540.00 m2	500.00 m2	100	2 días
CALLE 23	470.16 m2	500.00 m2	1	1 días
AV. SAN PEDRO	432.00 m2	500.00 m2	1	1 días
	250.00 m2	500.00 m2	1	1 días
	3088.80 m2	500.00 m2	1	7 días
Jr. Vargas Guerra (Escalinata)	309.60 m2	500.00 m2	1	1 días
JR. GARCILAZO DE LA VEGA	576.00 m2	500.00 m2	1	2 días
		•	TOTAL	33 días

ENCOFRA	DO Y DESENCOFRAD	O LOSA DE CONCE	RETO	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	118.58 m2	36.00 m2	2op + 2of	4 días
CALLE 14	123.22 m2	36.00 m2	2op + 2of	4 días
CALLE 17	250.46 m2	36.00 m2	2op + 2of	7 días
CALLE 18	125.60 m2	36.00 m2	2op + 2of	4 días
CALLE 20	200.58 m2	36.00 m2	2op + 2of	6 días
CALLE 21	89.39 m2	36.00 m2	2op + 2of	3 días
CALLE 22	89.24 m2	36.00 m2	2op + 2of	3 días
	80.90 m2	36.00 m2	2op + 2of	3 días
	87.96 m2	36.00 m2	2op + 2of	3 días
CALLE 23	78.26 m2	36.00 m2	2op + 2of	3 días
AV. SAN PEDRO	70.44 m2	36.00 m2	2op + 2of	2 días
	57.92 m2	36.00 m2	2op + 2of	2 días
	507.48 m2	36.00 m2	2op + 2of	15 días
Jr. Vargas Guerra (Escalinata)	52.00 m2	36.00 m2	2op + 2of	2 días
JR. GARCILAZO DE LA VEGA	94.40 m2	36.00 m2	2op + 2of	3 días
			TOTAL	64 días

PAVIMENT	TO DE CONCRETO F'C	= 210KG/CM2 E=0.	20 M.	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	716.40 m2	129.60 m2		6 días
CALLE 14	752.40 m2	129.60 m2	Ī	6 días
CALLE 17	1528.56 m2	129.60 m2	1	12 días
CALLE 18	761.76 m2	129.60 m2	Ī	6 días
CALLE 20	1216.08 m2	129.60 m2	Ī	10 días
CALLE 21	542.52 m2	129.60 m2	Ī	5 días
CALLE 22	541.44 m2	129.60 m2	2op + 1of +	5 días
	491.76 m2	129.60 m2	3pe + 1mi +	4 días
	540.00 m2	129.60 m2	1re	5 días
CALLE 23	470.16 m2	129.60 m2	Ī	4 días
AV. SAN PEDRO	432.00 m2	129.60 m2	Ī	4 días
	250.00 m2	129.60 m2		2 días
	3088.80 m2	129.60 m2	Ī	24 días
Jr. Vargas Guerra (Escalinata)	309.60 m2	129.60 m2	I	3 días
JR. GARCILAZO DE LA VEGA	576.00 m2	129.60 m2		5 días
			TOTAL	101 días

ACER	O CORRUGADO (BAS	TONES EN JUNTAS	5)	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	81.19 kg	250.00 kg	1op + 1of	1 días
CALLE 14	85.27 kg	250.00 kg	1op + 1of	1 días
CALLE 17	173.24 kg	250.00 kg	1op + 1of	1 días
CALLE 18	86.33 kg	250.00 kg	1op + 1of	1 días
CALLE 20	137.82 kg	250.00 kg	1op + 1of	1 días
CALLE 21	61.49 kg	250.00 kg	1op + 1of	1 días
CALLE 22	61.36 kg	250.00 kg	1op + 1of	1 días
	55.73 kg	250.00 kg	1op + 1of	1 días
	61.20 kg	250.00 kg	1op + 1of	1 días
CALLE 23	53.28 kg	250.00 kg	1op + 1of	1 días
AV. SAN PEDRO	48.96 kg	250.00 kg	1op + 1of	1 días
	40.80 kg	250.00 kg	1op + 1of	1 días
	350.06 kg	250.00 kg	1op + 1of	2 días
Jr. Vargas Guerra (Escalinata)	35.09 kg	250.00 kg	1op + 1of	1 días
JR. GARCILAZO DE LA VEGA	65.28 kg	250.00 kg	1op + 1of	1 días
TOTAL	1397.11 kg	250.00 kg		6 días

ACERO LISO	O (BASTONES EN JUN	ITAS) - TRANSVER	SALES	
DESCRIPCIÓN	METRADO	RENDIMIENTO	CUADRILLA	DURACIÓN
PROL. TUPAC AMARU	326.71 m2	250.00 kg	1op + 1of	2 días
CALLE 14	343.13 m2	250.00 kg	1op + 1of	2 días
CALLE 17	697.09 m2	250.00 kg	1op + 1of	3 días
CALLE 18	347.39 m2	250.00 kg	1op + 1of	2 días
CALLE 20	554.58 m2	250.00 kg	1op + 1of	3 días
CALLE 21	247.41 m2	250.00 kg	1op + 1of	1 días
CALLE 22	246.92 m2	250.00 kg	1op + 1of	1 días
	224.26 m2	250.00 kg	1op + 1of	1 días
	246.26 m2	250.00 kg	1op + 1of	1 días
CALLE 23	214.41 m2	250.00 kg	1op + 1of	1 días
AV. SAN PEDRO	197.01 m2	250.00 kg	1op + 1of	1 días
	164.18 m2	250.00 kg	1op + 1of	1 días
	1408.62 m2	250.00 kg	1op + 1of	6 días
Jr. Vargas Guerra (Escalinata)	141.19 m2	250.00 kg	1op + 1of	1 días
JR. GARCILAZO DE LA VEGA	262.68 m2	250.00 kg	1op + 1of	2 días
TOTAL	5621.84 m2	250.00 kg		23 días

ANEXO B: PROGRAMACIÓN LOOKAHEAD Y PPC DE OBRA

PROGRAMACIÓN LAST PLANNER - OBRA LA MARINA

										_										1						1			_		_															
		SEN	IANA 1	_				SI	EMANA	_	1.0			1		SEMAN	-				1	1 0 1	SEMAN						S	EMANA	5	1 01	0.0	0.1	0.5		IANA 6				10			MANA 7		
	1115	VIER	3 SAE	7	4 111	B A	9 ΛAR	10	11	12 VIER	13 SAB	14	15 LUN	16 MAR	17 MIER	JUE	_	9 20 ER SAE		22 LUN		_	JUE			28	29 LUN	30 MAR	31 MIER	32	33 VIER	34 SAB	35	36				40 √IER	SAB DO	12					VIER	45 46 SAB DO
DESCRIPCION	JUE 25/6				5 29		80/6	1/7	JUE 2/7	3/7	4/7	5/7	6/7	7/7	8/7	9/7				13/7							20/7	21/7	22/7	JUE 23/7	24/7	25/7	26/7	27/7					1/8 2						7/8	8/8 9/8
PAVIMENTOS Y MOV. DE TIERRAS	20,0	20,0	2,7,	207	2	, ,	,0,0	.,,		0,,		0,,	0,,	1 .,,	0,,		,	,, ,,	, .	10,7	,,	.0,,	, ,	.,,,	10,7	.,,,	20,7	2.77		20,7		2077	2077				5077	,,,,	.,,		,,,,	., 0	0,0		,,,	5,5
CORTE Y/O DE MATERIAL A NIVEL DE	0.00		000	000			200	01/	0)/		00011		00011	DTA	i DTA		į.	1		047	. 047	1 017		!	1				00	0.0		<u> </u>				1	!					1				
SUB-RASANTE	SP2	i SP2	C20) C20) C2	20 C	C20	GV I	GV	I GV	C22II	L	C2211	PTA	PIA		_			C17	C17	U17		 - - —	 - - —				SP	SP	I SP	SP						— - -								
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	SP2	SP2	C20) C2		C20	GV	GV	GV	C22II		C22II	PTA	PTA					C17	C17	C17			<u> </u>				SP	SP	SP	SP						<u> </u>				_ <u> </u>	<u> </u>	 	<u> </u>	
BASE DE 0.20 M.		į	SP2		2 C2	20 C	C20	C20	C20	GV	GV	GV	C22I	C22II	C2211	РТА	PT.	A PTA	A		ļ	C17	C17	C17	C17		į				į	į		į	SP	SP	SP	į			į	į		į	į	
COMPACTACION Y NIVELACIÓN DE BASE DE 0.20 M.		 	+ 	SP2	2 SF	2 C	C20	C20	C20	GV	GV	GV	C22I	C22II	C2211	PTA	PT	 A	۸			C17	C17	C17	C17			 	 		† — ·	1 			SP	SP	SP	 				-	+-			
ENCOFRADO LOSA DE CONCRETO		<u> </u>	<u> </u>				SP2		SP2	C20	C20	C20	C20	GV C22I	GV C22I	GV C22l	G\ I	V GV 21 C22	21	C22II	C22II	C2211	C22I	РТА	PTA		PTA	PTA	C17	C17	C17	C17				SP	SP	SP	SP							
EXCAVACIÓN PARA UÑA DE CONCRETO PAVIMENTO DE CONCRETO F'C= 210		<u> </u>	<u> </u>								C20		C20	C20	GV C22I	GV C22I	G\ I C2:	V GV 21 C22	? <u> </u>	C22II	C22I	C2211	C22I		РТА		PTA	PTA	PTA	C17	C17	C17				C17	SP	SP	SP		SP					
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M DESENCOFRADO LOSA DE			Ī			S	SP2	SP2	SP2	SP2	C20		C20	C20	GV C22I	GV C22I	G\ C2:	V GV 21 C22	21	C22II	C22I	C22II	C22I		РТА		PTA	РТА	РТА	C17	C17	C17				C17	SP	SP	SP		SP] j_	
CONCRETO		į	i I					SP2	SP2	SP2	SP2		C20	C20	C20	GV C22I	G\ I C2:	21 C22 V GV 21 C22	21		C22II	C2211	C22		PTA		PTA	PTA	PTA	PTA	C17	C17		j		C17	C17	SP	SP		SP	<u> </u>		<u> </u>	į Į	
MUROS DE CONTENCIÓN																	-																													
TRAZO NIVEL Y REPLANTEO		PTAII				5	SPI	SPI						SPII		 	<u> </u>	 			<u> </u> 	 -	ļ _	 	 			 			<u> </u>	 				 		<u> </u>			 	<u> </u>				
EXCAVACION PARA CIMIENTO MURO		PTAII				PΊ	TAIII		SPI	SPI	SPI			SPII	SPII	SPII]					<u>-</u>								<u> </u>	
ELIMINACION DE MATERIAL EXCEDENTE CON VOLQUETE	PTAI	PTAII	PTA	П			TAIII		SPI	SPI	SPI	ļ	SPII	SPII	SPII	SPII		i i		.	- 	i - i — —	i - i —	i - i - —	i 			 	i ⊢i		i 	i 		<u>.</u>		j j	i i	<u>.</u> .			i	_ ; ∔	 .	<u>i</u>	i	
SOLADO DE CONCRETO E=0.10 M			PTA			PI	TAIII	ł		-	SPI			1	<u> </u>	-	SP	PII SPI	l l		<u> </u>	ł		i i	-				;		 	}				į	ł	ł			į			i i		
ACERO DE REFUERZO F'Y=4200		PTAI	PTA			P1	TAIII	<u>†</u>		 		7	SPI	SPI	SPI	SPI		SPI	I SPII	SPII			- 		·			: 			† — ·	 i						<u>-</u>					·			
KG/CM2 ENCOFRADO DE MURO DE CONTENCION		†	PTA		PT	All P	TAII I	PTAIII	PTAI	PTAII	PTAIII		PTAII	PTAIII	PTAII	PTAI	II SF	PI SP	I SPI	SPI	SPI	SPI	SPI	SPI	SPII		SPII	SPII	SPII	SPII	SPII	SPII	SPII	SPII S	SPII								·			
CONCRETO FC=210 KG/CM2 - EN		+ 	†					PTAII			PTAII			PTAII		I PTAI	— <mark> — -</mark> Ⅱ ¦ PTA	AII		SPI	SPI	SPI	SPI	SPI	SPI		SPII	SPII	SPII	SPII	SPII	SPII	SPII	SPII S	SPII					_		+				
MURO DE CONTENCION DESENCOFRADO DE MURO DE		<u> </u>	†					PTAI	PTAII	PTAIII	PTAI	†·	PTAII	PTAIII	PTAII	PTAI	II PTA	AII PTA	JII .	SPI	SPI	SPI	SPI	SPI	! SPI		SPII	SPII	SPII	SPII	SPII	SPII	SPII	SPII ! S	SPIL	<u> </u> -		<u>-</u>						<u>-</u>	<u>i</u> -	
CONTENCION_ RELLENO CON MATERIAL DE			- 				—j	— 	DTAII	DTAIII	PTAI		DTAIL	- — - — - - DTAIII		_		– j- – All ¦ PTA							- -		 SPII	- — - — -	⊢ SPII	SPII	⊢ SPII	SPII				 -	<u>i</u>	 				 -	- i	 	<u>j</u> -	
PRESTAMO VEREDAS Y MARTILLOS		1						FIAI	FIAII	FIAIII	FIAI		FIAII	FIAIII	FIAI	FIAI	" "	AII F 1A	\III	SFI	SFI	351	SFI	351	371		SFII	SFII	J SFII	SFII	J	J	SFII	3711	3511											
CORTE Y/O RELLENO SUPERFICIAL		1					'	1		1					1							1			1									1											1	
MANUAL EN VEREDAS COMPACTADO CON MATERIAL		<u> </u>	C18	SI I				i		j SP		L	C22II	C17IV	C17I\	/ C17II	II C17	7III C17					_i	j SP	_i		C20III	C20III	C20I	C20I	C2011	C20II				!	PTA į F		<mark></mark>	5	GV į (GV		!		
COMPACTADO CON MATERIAL PROPIO		 	C18				SP	SP	SP	SP	C22II		C22II	C17IV	C17I\	/ C17II	II C17	7III C17	11	C17II	SP	SP	SP	SP	SP		C20III	C20III	C20I	C20I	C20II	C20II			F	PTA I	PTA F	РТА	PTA		GV (j j	
PROPIO ELIMINACIÓN DE MATERIAL EXCEDENTE		<u> </u>	C18	II I				SP	SP	SP	C22II			C17IV	C17I\	/ C17II	II C17	7III C17	11	C17II	SP	SP	SP	SP	SP		C20III	C20III	C20I	C20I	C20II	C20II			1	PTA ¦ I	PTA ¦ F	PTA ¦	PTA		GV i	GV	;	<u> </u>	i	
ENCOFRADO DE VEREDAS		!				C	C18I	C18I	SP	l SP	l SP		SP	C22II	C2211	C17I	V C17	7IV C17	Ш	C17III	C17II	I ¦ C17II	SP	! SP	SP		SP	C20III	C20III	C20I	C20I	C20I			C	22011	2011 C	2011	РТА	F	TA	PTA	GV !	GV	GV	GV
CONCRETO FC=140KG/CM2 PARA VEREDAS		+ 	i			C	C18I	C18I	SP	SP	SP			4	+	- 		7IV C17						SP								C20I				2011	220II C	2011	PTA	F	'TA I	PTA	GV	GV GV	GV	GV
DESENCOFRADO DE VEREDAS		<u> </u>	. <u> </u>					C18I	C18I	SP	SP		SP	SP	C22II	C22I	I C17	7IV C17I	IV	C17III	C17II	C17II	C17I	I SP	SP		SP	SP	C20III	C20III	C20I	C20I		-	C	C20I C	20II C	2011	C20II	F	TA I	РТА	РТА	GV	GV	GV

LEYENDA:

SP: AV. SAN PEDRO. SP2: AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACIÓN TUPAC AMARU.

C22: CALLE 22. C17: CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACIÓN TUPAC AMARU.

PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU. **PTAIII:** MURO III EN PROLONGACIÓN TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

PPC SEMANA 01

		SEM	ANA 1		ı		
DESCRIPCION	1 JUE	2 VIER	3 SAB	7 DOM	(CUMP	LIMIENTO)	(CAUSAS DE INCUMPLIMIENTO)
DESCRIPCION	25/6	26/6	27/6	28/6	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS		•	•				
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE	SP2	SP2	C20	C20	X		
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	SP2	SP2	C20	C20	X		
BASE DE 0.20 M.		i İ	SP2	SP2	X		
COMPACTACION Y NIVELACIÓN DE BASE DE 0.20 M.		γ 	,	SP2	X		
ENCOFRADO LOSA DE CONCRETO		¦ 	¦ 				
EXCAVACIÓN PARA UÑA DE CONCRETO		 	ļ				
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M		 	 				
DESENCOFRADO LOSA DE CONCRETO		į	į				
MUROS DE CONTENCIÓN			1				
TRAZO NIVEL Y REPLANTEO	PTAI	PTAII	PTAIII		X		
EXCAVACION PARA CIMIENTO MURO	PTAI	PTAII	PTAII		X		
ELIMINACION DE MATERIAL EXCEDENTE CON VOLQUETE	PTAI	PTAII	PTAII		X		
SOLADO DE CONCRETO E=0.10 M		PTAI	PTAII		X		
ACERO DE REFUERZO F'Y=4200 KG/CM2		PTAI	PTAII		X		
ENCOFRADO DE MURO DE CONTENCION		 -	PTAI		x		
CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION DESENCOFRADO DE MURO DE CONTENCION							
RELLENO CON MATERIAL DE PRESTAMO		 	 				
VEREDAS Y MARTILLOS		•					
CORTE Y/O RELLENO SUPERFICIAL MANUAL EN VEREDAS		;	C18I			x	FALTA DE MANO DE OBRA
COMPACTADO CON MATERIAL PROPIO		 <u> -</u>	C18I			X	FALTA DE MANO DE OBRA
ELIMINACIÓN DE MATERIAL EXCEDENTE		_ _ L	C18I			x	FALTA DE MANO DE OBRA
ENCOFRADO DE VEREDAS		<u> </u>	<u> </u>				
CONCRETO FC=140KG/CM2 PARA VEREDAS		' 	' 				
DESENCOFRADO DE VEREDAS		; 	; 				

LEYENDA:

SP: AV. SAN PEDRO. **SP2:** AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACIÓN TUPAC AMARU.

C22: CALLE 22. **C17:** CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACIÓN TUPAC AMARU.
PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU.
PTAIII: MURO III EN PROLONGACIÓN TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

PPC:	77%
ACTIVIDADES NO CUMPLIDAS:	3
ACTIVIDADES CUMPLIDAS:	10

PPC SEMANA 02

				SEMAN	NA 2			1		
	8	9	10	11	12	13	14	CHAR	LIMIENTO)	(CAUSAS DE INCUMPLIMIENTO)
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM		- ,	(CAUSAS DE INCOMPLIMIENTO)
	29/6	30/6	1/7	2/7	3/7	4/7	5/7	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS										
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE	C20	C20	GV	GV	GV	C22II		x		
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	C20	C20	GV	GV	GV	C22II		х		
BASE DE 0.20 M.	C20	C20	C20	C20	GV	GV	GV	x		
COMPACTACION Y NIVELACION DE BASE DE 0.20 M.	SP2	C20	C20	C20	GV	GV	GV	х		
ENCOFRADO LOSA DE CONCRETO		SP2	SP2	SP2	C20	C20	C20	х		
EXCAVACIÓN PARA UÑA DE CONCRETO		SP2	SP2	SP2	SP2	SP2	C20	х		
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M		SP2	SP2	SP2	SP2	SP2	C20		X	PROBLEMA CON PROVEEDORES
DESENCOFRADO LOSA DE CONCRETO			1	SP2	SP2	SP2	SP2		х	ACTIVIDAD PREDECESORA
MUROS DE CONTENCIÓN										
TRAZO NIVEL Y REPLANTEO		SPI	SPI			l i		Х		
EXCAVACION PARA CIMIENTO MURO		PTAIII		SPI	SPI	SPI		Х		
ELIMINACION DE MATERIAL EXCEDENTE CON VOLQUETE		PTAIII		SPI	SPI	SPI		х		
SOLADO DE CONCRETO E=0.10 M		PTAIII		 		SPI		х		
ACERO DE REFUERZO F'Y=4200 KG/CM2		PTAIII		 				х		
ENCOFRADO DE MURO DE CONTENCION	PTAII	PTAII	PTAIII	PTAI	PTAII	PTAIII		х		
CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION		PTAI	PTAII	PTAIII	PTAI	PTAII			x	PROBLEMA CON PROVEEDORES
DESENCOFRADO DE MURO DE CONTENCION			PTAI	PTAII	PTAIII	PTAI			x	ACTIVIDAD PREDECESORA
RELLENO CON MATERIAL DE PRESTAMO			PTAI	PTAII	PTAIII	PTAI		х		
VEREDAS Y MARTILLOS					•					
CORTE Y/O RELLENO SUPERFICIAL MANUAL EN VEREDAS		SP	SP	SP	SP	C22II		х		
COMPACTADO CON MATERIAL PROPIO		SP	SP	SP	SP	C22II		x		
ELIMINACIÓN DE MATERIAL EXCEDENTE		SP	SP	SP	SP	C22II		х		
ENCOFRADO DE VEREDAS		C18I	C18I	SP	SP	SP		х		
CONCRETO FC=140KG/CM2 PARA VEREDAS		C18I	C18I	SP	SP	SP		х		
DESENCOFRADO DE VEREDAS			C18I	C18I	SP	SP		Х		

LEYENDA:

SP: AV. SAN PEDRO. SP2: AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACIÓN TUPAC AMARU.

C22: CALLE 22. C17: CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACIÓN TUPAC AMARU. PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU.
PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU.
SPI: MURO I DE AV. SAN PEDRO

PPC:	83%
ACTIVIDADES NO CUMPLIDAS:	4
ACTIVIDADES CUMPLIDAS:	19

PPC SEMANA 03

				SEMAN	IA 3			1		
	15	16	17	18	19	20	21	CHMP	LIMIENTO)	(CAUSAS DE
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM	•	,	INCUMPLIMIENTO)
	6/7	7/7	8/7	9/7	10/7	11/7	12/7	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS										
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE	C22II	PTA	PTA	 		 		X		
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	C22II	PTA	PTA	j				X		
BASE DE 0.20 M.	C22I	C22II	C22II	PTA	PTA	PTA		x		
COMPACTACION Y NIVELACIÓN DE BASE DE 0.20 M.	C22I	C22II	C22II	PTA	PTA	PTA		x		
ENCOFRADO LOSA DE CONCRETO	C20	C20	GV C22I	GV C221	GV C22I	GV C22I	GV C22I	X		
EXCAVACIÓN PARA UÑA DE CONCRETO	C20	C20	C20	GV C221	GV C22I	GV C22I	GV C22I		X	FALLA DE EQUIPOS
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M	C20	C20	C20	GV C22I	GV C22I	GV C22I	GV C22I		X	ACTIVIDAD PREDECESORA
DESENCOFRADO LOSA DE CONCRETO	C20	C20	C20	C20	GV C22I	GV C22I	GV C22I		X	ACTIVIDAD PREDECESORA
MUROS DE CONTENCIÓN										
TRAZO NIVEL Y REPLANTEO	SPII	SPII						X		
EXCAVACION PARA CIMIENTO MURO	SPII	SPII	SPII	SPII				X		
ELIMINACION DE MATERIAL EXCEDENTE CON VOLQUETE	SPII	SPII	SPII	SPII				X		
SOLADO DE CONCRETO E=0.10 M			: 	: 	SPII	SPII		X		
ACERO DE REFUERZO F'Y=4200 KG/CM2	SPI	SPI	SPI	SPI		SPII	SPII	X		
ENCOFRADO DE MURO DE CONTENCION	PTAII	PTAIII	PTAII	PTAII	SPI	SPI	SPI	x		
CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION DESENCOFRADO DE MURO DE	PTAIII	PTAII	PTAIII	PTAII	PTAII			x		
DESENCOFRADO DE MURO DE CONTENCION	PTAII	PTAIII	PTAII	PTAIII	PTAII	PTAII		X		
RELLENO CON MATERIAL DE PRESTAMO	PTAII	PTAIII	PTAII	PTAIII	PTAII	PTAII		X		
VEREDAS Y MARTILLOS										
CORTE Y/O RELLENO SUPERFICIAL MANUAL EN VEREDAS	C22II	C17IV	C17IV	C17III	C17III	C17II		x		
COMPACTADO CON MATERIAL PROPIO	C22II	C17IV	C17IV	C17III	C17III	C17II		X		
ELIMINACIÓN DE MATERIAL EXCEDENTE	C22II	C17IV	C17IV	C17III	C17III	C17II		x		
ENCOFRADO DE VEREDAS	SP	C22II	C22II	C17IV	C17IV	C17III			X	falta de mano de obra
CONCRETO FC=140KG/CM2 PARA VEREDAS	SP	C22II	C22II	C17IV	C17IV	C17III				ACTIVIDAD PREDECESORA
DESENCOFRADO DE VEREDAS	SP	SP	C22II	C22II	C17IV	C17IV			X	ACTIVIDAD PREDECESORA

LEYENDA:

SP: AV. SAN PEDRO. **SP2:** AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACION TUPAC AMARU.

C22: CALLE 22. **C17:** CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACION TUPAC AMARU.
PTAII: MURO II EN PROLONGACION TUPAC AMARU.
PTAIII: MURO III EN PROLONGACION TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

17	ACTIVIDADES CUMPLIDAS:
6	ACTIVIDADES NO CUMPLIDAS:
74%	PPC:

				SEMAN	NA 4			1		
	22	23	24	25	26	27	28	(CIIME	LIMIENTO)	(CAUSAS DE
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM	`		INCUMPLIMIENTO)
	13/7	14/7	15/7	16/7	17/7	18/7	19/7	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS										
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE	C17	C17	C17			!		х		
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE	C17	C17	C17			 		х		
BASE DE 0.20 M.			C17	C17	C17	C17		х		
COMPACTACION Y NIVELACIÓN DE BASE DE 0.20 M.			C17	C17	C17	C17		х		
ENCOFRADO LOSA DE CONCRETO	C22II	C22II	C22II	C22II	PTA	PTA		х		
EXCAVACIÓN PARA UÑA DE CONCRETO	C22II	C22II	C22II	C22II		PTA		х		
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M	C22II	C22II	C22II	C22II		PTA		х		
DESENCOFRADO LOSA DE CONCRETO		C22II	C22II	C22II		PTA		Х		
MUROS DE CONTENCIÓN										-
TRAZO NIVEL Y REPLANTEO			i I	ı		1				
EXCAVACION PARA CIMIENTO MURO ELIMINACION DE MATERIAL EXCEDENTE				-		; —				
CON VOLQUETE SOLADO DE CONCRETO E=0.10 M			ļ	<u> </u>	<u> </u>	ļ				
SOLADO DE CONCRETO E=0.10 M			ļ —			ļ				
ACERO DE REFUERZO F'Y=4200 KG/CM2	SPII		İ			į		х		
ENCOFRADO DE MURO DE CONTENCION	SPI	SPI	SPI	SPI	SPI	SPII		х		
CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION	SPI	SPI	SPI	SPI	SPI	SPI		х		
DESENCOFRADO DE MURO DE CONTENCION	SPI	SPI	SPI	SPI	SPI	SPI		х		
RELLENO CON MATERIAL DE PRESTAMO	SPI	SPI	SPI	SPI	SPI	SPI		X		
VEREDAS Y MARTILLOS									ı	
CORTE Y/O RELLENO SUPERFICIAL	C17II	SP	I CD	SP	SP	: SP			1	1
MANUAL EN VEREDAS			SP	3P	55	ļ				
COMPACTADO CON MATERIAL PROPIO	C17II	SP	SP	SP	SP	SP			x	FALLA DE EQUIPO
ELIMINACIÓN DE MATERIAL EXCEDENTE	C17II	SP	SP	SP	SP	SP			x	ACTIVIDAD PREDECESORA
ENCOFRADO DE VEREDAS	C17III	C17II	C17II	SP	SP	SP			X	ACTIVIDAD PREDECESORA
CONCRETO FC=140KG/CM2 PARA VEREDAS	C17III	C17II	C17II	SP	SP	SP			X	ACTIVIDAD PREDECESORA
DESENCOFRADO DE VEREDAS	C17III	C17III	C17II	C17II	SP	SP			X	ACTIVIDAD PREDECESORA

LEYENDA: SP: AV. SAN PEDRO. SP2: AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACION TUPAC AMARU.

C22: CALLE 22. C17: CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACION TUPAC AMARU. PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU. PTAIII: MURO III EN PROLONGACION TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

13	ACTIVIDADES CUMPLIDAS:
5	ACTIVIDADES NO CUMPLIDAS:
72%	PPC:

Ī	SEMANA 5									
	29	30	31	32	33	34	35	(CULAT		(CAUSAS DE
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM	(CUMP	LIMIENTO)	INCUMPLIMIENTO)
	20/7	21/7	22/7	23/7	24/7	25/7	26/7	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS										
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE			SP	SP	SP	SP		x		
ELIMINACION DE MATERIAL EXCEDENTE CARGUIO MANUAL CON VOLQUETE		 	SP	SP	SP	SP		х		
BASE DE 0.20 M.						i				
COMPACTACION Y NIVELACIÓN DE BASE DE 0.20 M.		;: 		 		; — — - 				
ENCOFRADO LOSA DE CONCRETO	PTA	PTA	C17	C17	C17	C17		х		
EXCAVACIÓN PARA UÑA DE CONCRETO	PTA	PTA	PTA	C17	C17	C17		х		
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M	PTA	PTA	PTA	C17	C17	C17		х		
DESENCOFRADO LOSA DE CONCRETO	PTA	PTA	PTA	PTA	C17	C17	i	х		
MUROS DE CONTENCIÓN										
TRAZO NIVEL Y REPLANTEO		L		L		<u>.</u>				
EXCAVACION PARA CIMIENTO MURO ELIMINACION DE MATERIAL EXCEDENTE		 		 		; -				
CON VOLQUETE SOLADO DE CONCRETO E=0.10 M		Ļ <i>-</i>		L —		ļ				
SOLADO DE CONCRETO E=0.10 M		<u> </u>				ļ				
ACERO DE REFUERZO F'Y=4200 KG/CM2		<u> </u>		<u> </u>		į				
ENCOFRADO DE MURO DE CONTENCION	SPII	SPII	SPII	SPII	SPII	SPII	SPII	х		
CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION	SPII	SPII	SPII	SPII	SPII	SPII	SPII		x	FALTA DE COORDINACIÓN
DESENCOFRADO DE MURO DE CONTENCION	SPII	SPII	SPII	SPII	SPII	SPII	SPII		х	ACTIVIDAD PREDECESORA
RELLENO CON MATERIAL DE PRESTAMO	SPII	SPII	SPII	SPII	SPII	SPII	SPII	х		
VEREDAS Y MARTILLOS										
CORTE Y/O RELLENO SUPERFICIAL MANUAL EN VEREDAS	C20III	C20III	C20I	C20I	C20II	C20II		х		
COMPACTADO CON MATERIAL PROPIO	C20III	C20III	C20I	C20I	C20II	C20II		х		
ELIMINACIÓN DE MATERIAL EXCEDENTE	C20III	C20III	C20I	C20I	C20II	C20II		х		
ENCOFRADO DE VEREDAS	SP	C20III	C20III	C20I	C20I	C20I		Х		
CONCRETO FC=140KG/CM2 PARA VEREDAS	SP	C20III	C20III	C20I	C20I	C20I		х		
DESENCOFRADO DE VEREDAS	SP	SP	C20III	C20III	C20I	C20I		X		

LEYENDA: SP: AV. SAN PEDRO. SP2: AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACION TUPAC AMARU.

C22: CALLE 22. C17: CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACION TUPAC AMARU. PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU. PTAIII: MURO III EN PROLONGACION TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

14	ACTIVIDADES CUMPLIDAS:
2	ACTIVIDADES NO CUMPLIDAS:
88%	PPC:

				SEMAN	NA 6			7		
	36	37	38	39	40	41	42	(CULAR	· · · · · · · · · · · · · · · · · · ·	(CAUSAS DE
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM	(CUMP	LIMIENTO)	INCUMPLIMIENTO)
	27/7	28/7	29/7	30/7	31/7	1/8	2/8	SI	NO	•
PAVIMENTOS Y MOV. DE TIERRAS			•			•			•	
CORTE Y/O DE MATERIAL A NIVEL DE						I I				
SUB-RASANTE		- <u>-</u>		ļļ		ļ				
ELIMINACION DE MATERIAL EXCEDENTE				i i		i				
CARGUIO MANUAL CON VOLQUETE		SP	SP	SP		├	·			
BASE DE 0.20 M. COMPACTACION Y NIVELACION DE BASE				÷		<u> </u>		Х		
DE 0.20 M.		SP	SP	SP		!		X		
ENCOFRADO LOSA DE CONCRETO			SP	! SP !	SP	SP		х		
EXCAVACIÓN PARA UÑA DE CONCRETO			C17	SP I	SP	<u>SP</u>		X		
PAVIMENTO DE CONCRETO F'C= 210				·		·				
KG/CM2 E=0.20 M			C17	SP	SP	SP		X		
DESENCOFRADO LOSA DE CONCRETO			C17	C17	SP	SP		Х		
MUROS DE CONTENCIÓN									ı	
TRAZO NIVEL Y REPLANTEO						1				
EXCAVACION PARA CIMIENTO MURO				<u> </u>		<u></u>				
ELIMINACION DE MATERIAL EXCEDENTE				; — — ;		}				
CON VOLQUETE				!		<u> </u>				
SOLADO DE CONCRETO E=0.10 M						[
ACERO DE REFUERZO F'Y=4200 KG/CM2				Ī I		ī				
ENCOFRADO DE MURO DE CONTENCION			SPII	SPII		[Х		
CONCRETO FC=210 KG/CM2 - EN MURO			SPII	SPII		}				
DE CONTENCION		! ! _ 	31 11	0111		! '	<u></u>	Х		
DESENCOFRADO DE MURO DE			SPII	SPII		!		X		
CONTENCION RELLENO CON MATERIAL DE PRESTAMO			SPII	SPII		⊢ -				
VEREDAS Y MARTILLOS		l e e e e e e e e e e e e e e e e e e e	51 11	, 0111		1		Х		
CORTE Y/O RELLENO SUPERFICIAL			57.		5=4				l	
MANUAL EN VEREDAS			PTA	PTA	PTA	PTA			X	PLANOS DEFECTUOSOS
COMPACTADO CON MATERIAL PROPIO			PTA	PTA	PTA	PTA			X	A OTUUDAD DDEDEGEOODA
		ļ		i – Euri		ļ:. <u>``</u> `	ļ.——		^	ACTIVIDAD PREDECESORA
ELIMINACIÓN DE MATERIAL EXCEDENTE			PTA	PTA	PTA	PTA			X	ACTIVIDAD PREDECESORA
ENCOFRADO DE VEREDAS			C20II	C20II	C20II	PTA	h		X	ACTIVIDAD PREDECESORA
CONCRETO FC=140KG/CM2 PARA				÷		}				
VEREDAS			C20II	C20II	C20II	PTA			X	ACTIVIDAD PREDECESORA
DESENCOFRADO DE VEREDAS			C20I	C20II	C20II	C20II			X	ACTIVIDAD PREDECESORA

LEYENDA:

SP: AV. SAN PEDRO. **SP2:** AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACIÓN TUPAC AMARU.

C22: CALLE 22. **C17:** CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACION TUPAC AMARU.
PTAII: MURO II EN PROLONGACIÓN TUPAC AMARU.
PTAIII: MURO III EN PROLONGACIÓN TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

PPC·	63%
ACTIVIDADES NO CUMPLIDAS:	6
ACTIVIDADES CUMPLIDAS:	10

				SEMAN	1					
	40	41	42	43	44	45	46	(CIIMP	LIMIENTO)	(CAUSAS DE
DESCRIPCION	LUN	MAR	MIER	JUE	VIER	SAB	DOM			INCUMPLIMIENTO)
	3/8	4/8	5/8	6/8	7/8	8/8	9/8	SI	NO	
PAVIMENTOS Y MOV. DE TIERRAS										
CORTE Y/O DE MATERIAL A NIVEL DE SUB-RASANTE ELIMINACION DE MATERIAL EXCEDENTE		ļ 	<u> </u>	 		i 				
CARGUIO MANUAL CON VOLQUETE BASE DE 0.20 M. COMPACTACION Y NIVELACION DE BASE DE 0.20 M.		 	i i	 	— —	; —— ; ——-				
ENCOFRADO LOSA DE CONCRETO	SP	SP		-					X	FALTA DE COORDINACIÓN
EXCAVACIÓN PARA UÑA DE CONCRETO	SP	SP	SP	, 	-				Х	ACTIVIDAD PREDECESORA
PAVIMENTO DE CONCRETO F'C= 210 KG/CM2 E=0.20 M	SP	SP SP	SP	- — ; - —		}			X	ACTIVIDAD PREDECESORA ACTIVIDAD PREDECESORA
DESENCOFRADO LOSA DE CONCRETO MUROS DE CONTENCIÓN	SP	5P	SP	l		l			X	ACTIVIDAD PREDECESORA
TRAZO NIVEL Y REPLANTEO EXCAVACION PARA CIMIENTO MURO ELIMINACION DE MATERIAL EXCEDENTE CON VOLQUETE SOLADO DE CONCRETO E=0.10 M ACERO DE REFUERZO FY=4200 KG/CM2 ENCOFRADO DE MURO DE CONTENCION CONCRETO FC=210 KG/CM2 - EN MURO DE CONTENCION DESENCOFRADO DE MURO DE CONTENCION RELLENO CON MATERIAL DE PRESTAMO VEREDAS Y MARTILLOS CORTE Y/O RELLENO SUPERFICIAL										
MANUAL EN VEREDAS	GV	GV	ļ	<u>. </u>		; <u> </u>		х		
COMPACTADO CON MATERIAL PROPIO	GV	GV	<u> </u>	ii		i i		Х		
ELIMINACIÓN DE MATERIAL EXCEDENTE	GV	GV				 		х		
ENCOFRADO DE VEREDAS CONCRETO FC=140KG/CM2 PARA	PTA	PTA	GV	GV OV	GV	GV	GV		X	PLANOS DEFECTUOSOS
VEREDAS	PTA	PTA	GV	GV	GV	GV GV	GV		X	ACTIVIDAD PREDECESORA
DESENCOFRADO DE VEREDAS	PTA	PTA	PTA	GV	GV	G۷	GV		X	ACTIVIDAD PREDECESORA

LEYENDA:

SP: AV. SAN PEDRO. SP2: AV. SAN PEDRO 2.

C20: CALLE 20.

PTA: PROLONGACION TUPAC AMARU.

C22: CALLE 22. C17: CALLE 17.

GV: JR. GARCILAZO DE LA VEGA.

PTAI: MURO I EN PROLONGACION TUPAC AMARU.
PTAII: MURO II EN PROLONGACION TUPAC AMARU.
PTAIII: MURO III EN PROLONGACION TUPAC AMARU.

SPI: MURO I DE AV. SAN PEDRO

3	ACTIVIDADES CUMPLIDAS:
7	ACTIVIDADES NO CUMPLIDAS:
30%	PPC:

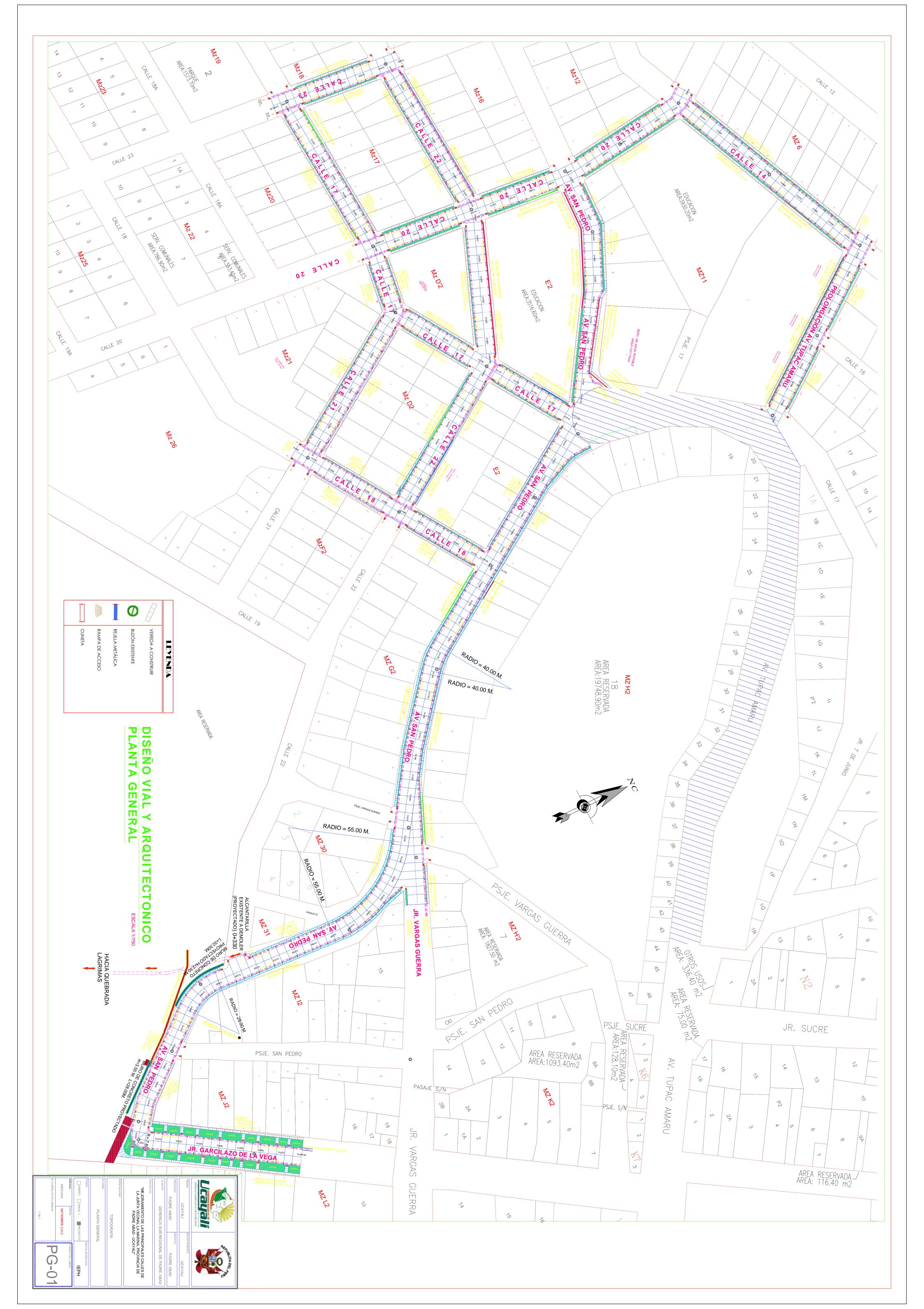
ANEXO C: CARTA BALANCE DE LA PARTIDA VACIADO DE CONCRETO

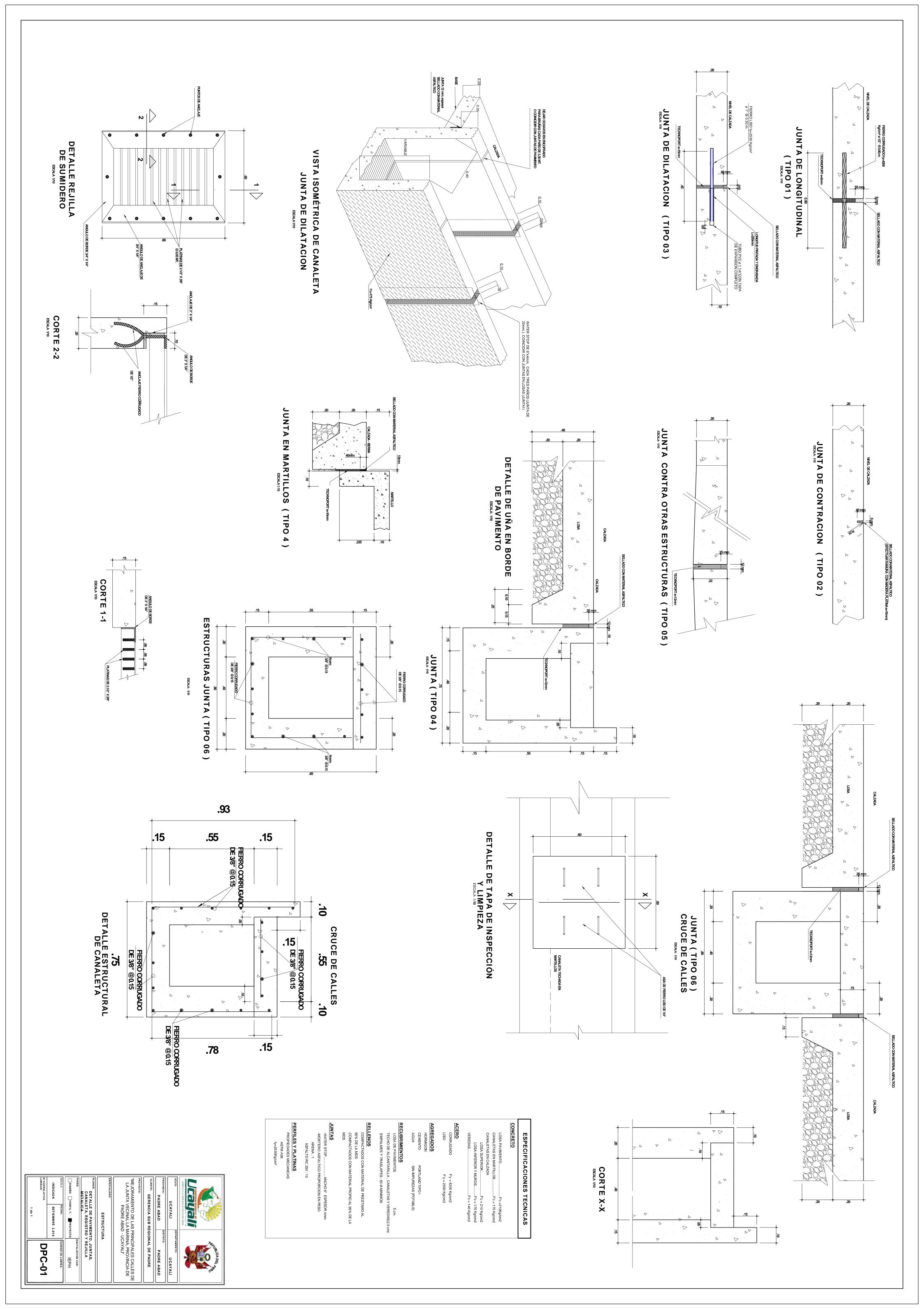
CONTROL DE PRODUCCIÓN Y RENDIMIENTO EN OBRA **CARTA BALANCE**

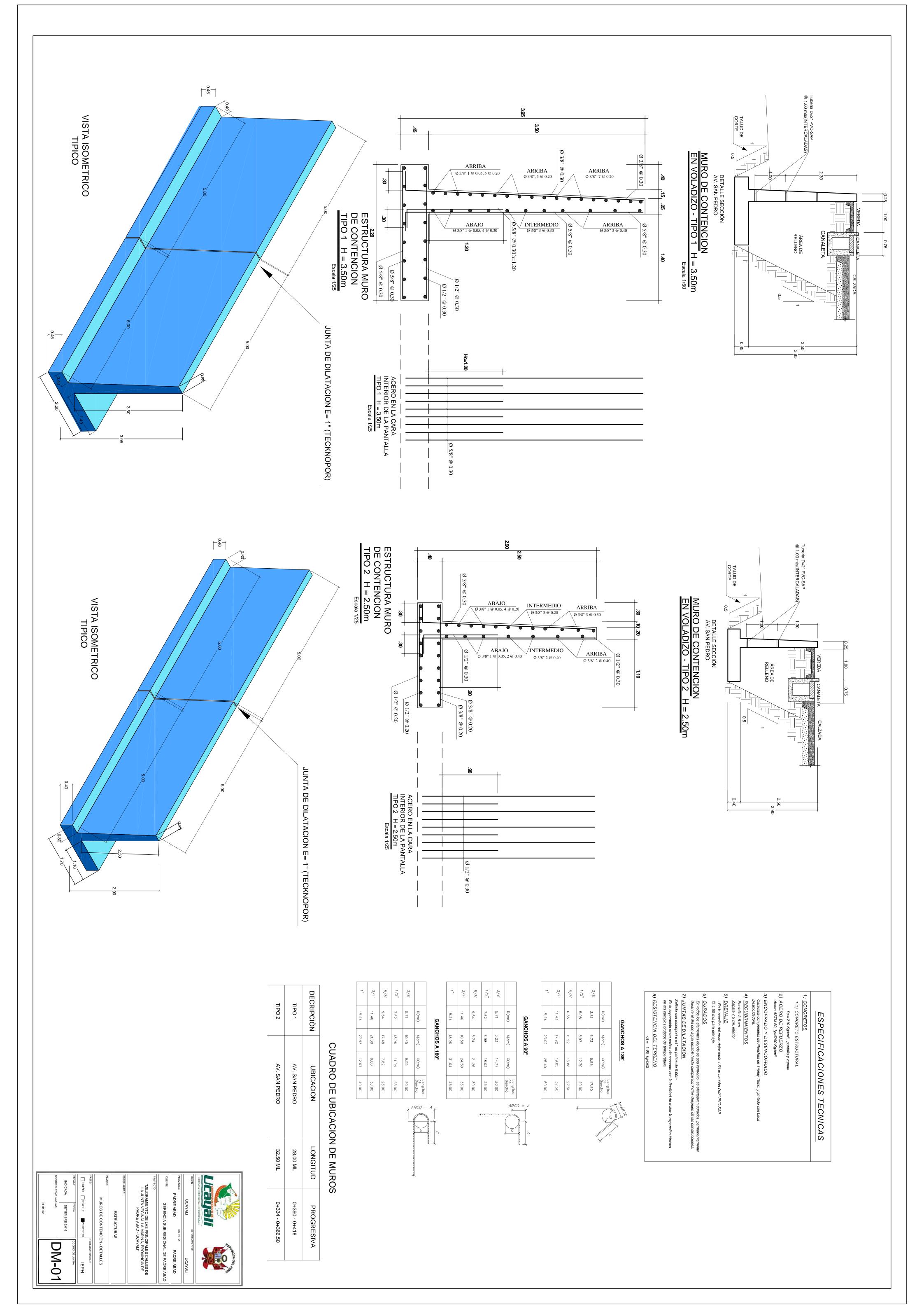
PROYECTO: "MEJORAMIENTO DE LAS PRINCIPALES CALLES DE LA JUNTA VECINAL LA MARINA, PROVINCIA DE

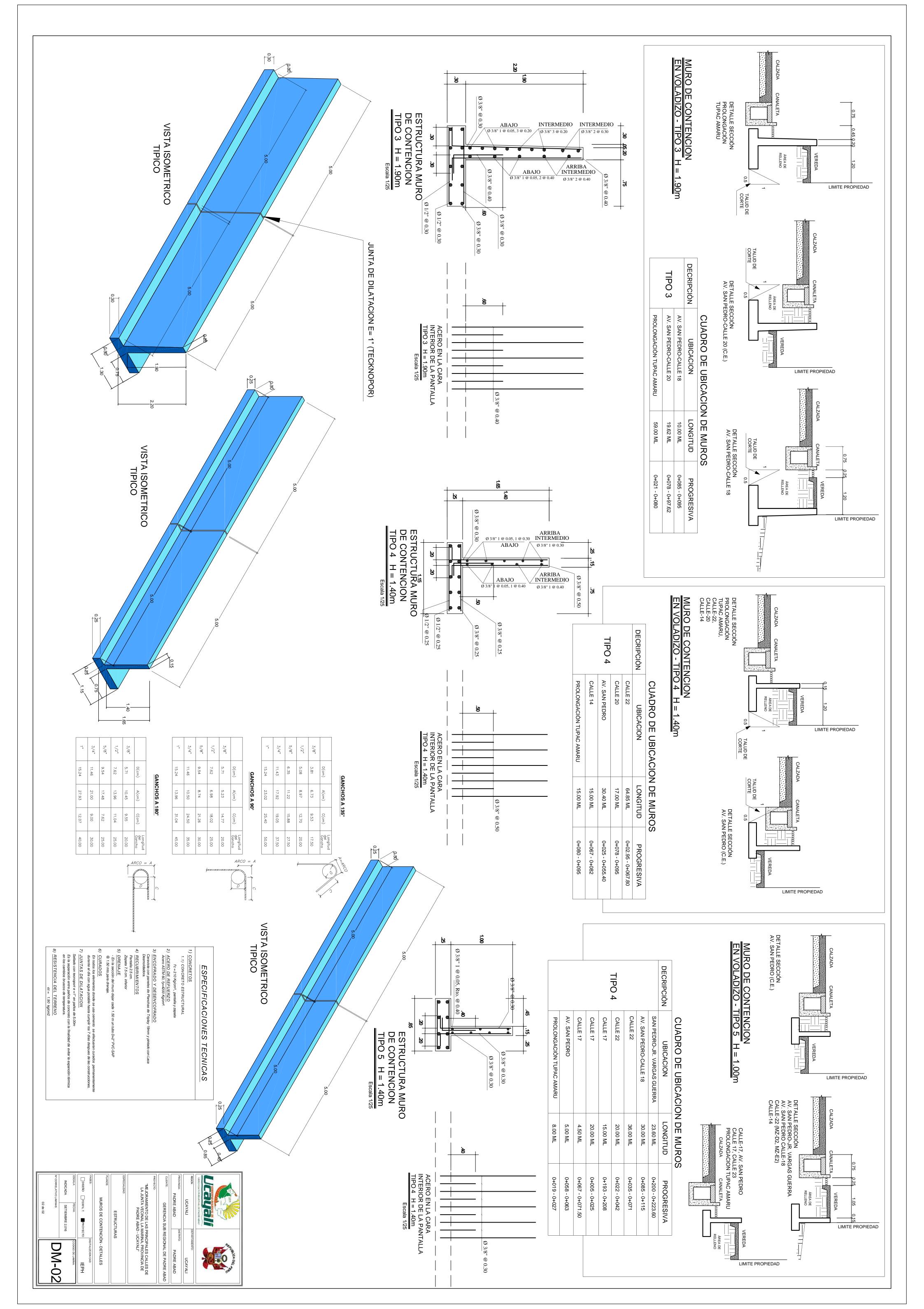
PADRE ABAD, UCAYALI"

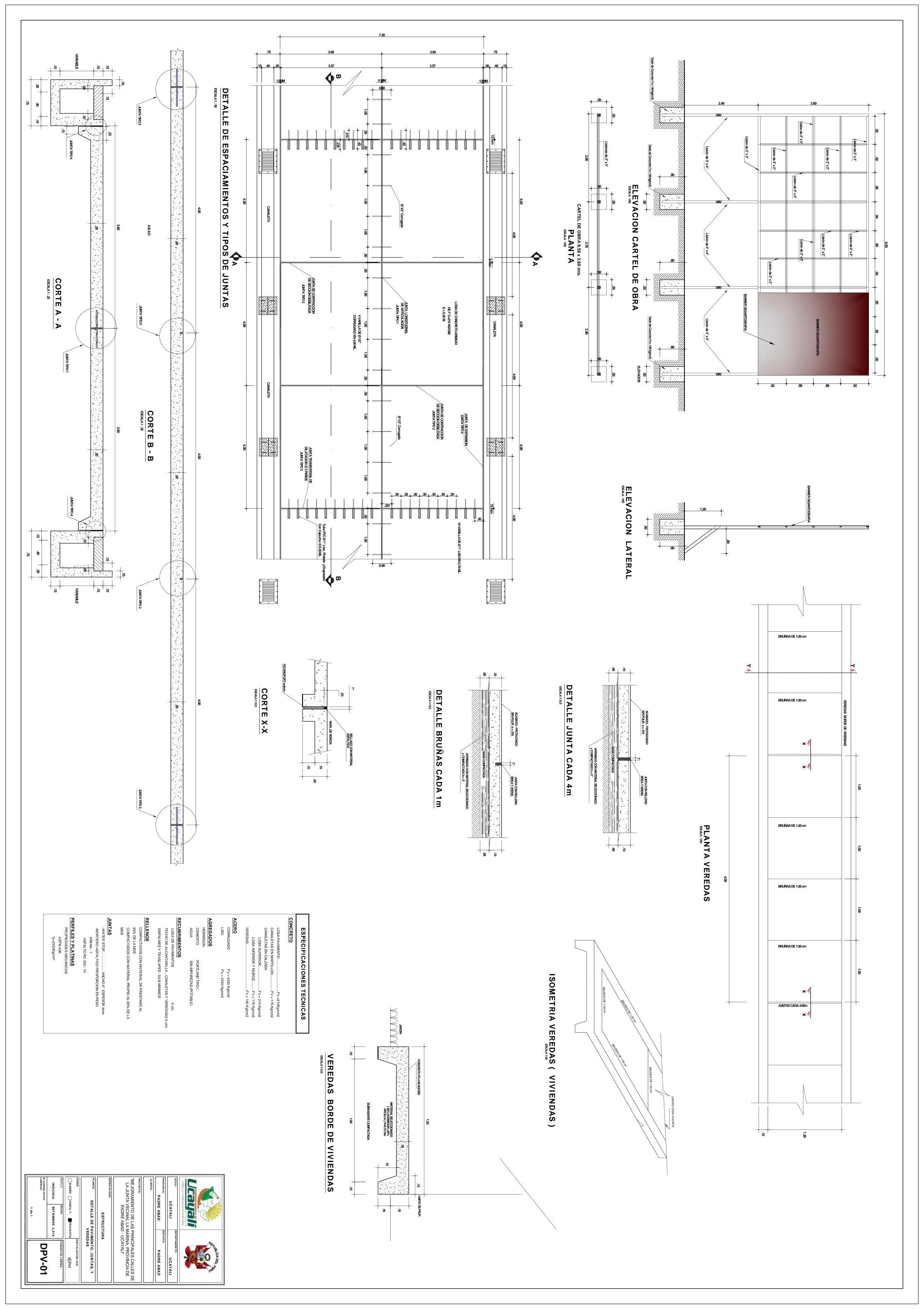
PARTIDA DE ANALISIS: VACIADO DE CONCRETO
INTERVALO DE MEDICIÓN: 1 MIN


NIVELES DE MEDICION


MEDICIONES			(CUADRILL	A		
MEDICIONES	OP EA	OP MN	OF LV	PE DZ	PE KS	PE HR	PE JR
1	TNC	TNC	TNC	MC	TNC	TNC	TNC
2	TNC	TNC	TM	MC	LA	TNC	TNC
3	TNC	TNC	VC	MC	RE	TNC	TNC
4	TNC	TM	VC	МС	RE	LA	TNC
5	TNC	RE	VC	МС	RE	LA	LA
6	RE	RE	VC	TRC	RE	TNC	LA
7	RE	RE	VC	TRC	LA	LA	LA
8	NI	RE	TNC	МС	LA	TNC	LA
9	RE	RE	TNC	MC	TNC	TNC	TNC
10	RE	RE	TNC	МС	TNC	LA	TNC
11	RE	RE	VC	МС	LA	LA	LA
12	RE	RE	VC	МС	LA	TNC	LA
13	TNC	TNC	VC	MC	LA	LA	LA
14	TNC	TNC	VC	MC	RE	TNC	LA
15	TNC	RE	VC	TNC	RE	TNC	LA
16	RE	RE	TNC	TNC	RE	TNC	ТМ
17	TNC	TNC	TNC	TRC	TNC	LA	TNC
18	TNC	TNC	TNC	TRC	TNC	LA	TNC
19	RE	RE	TNC	TRC	LA	TNC	TNC
20	NI	TM	TNC	МС	LA	LA	LA
21	NI	RE	TNC	МС	RE	TM	LA
22	TNC	RE	TNC	МС	LA	TNC	LA
23	TNC	RE	TNC	TNC	TNC	TNC	TNC
24	RE	RE	TNC	TNC	TNC	LA	LA
25	TM	RE	VC	TNC	RE	TNC	ТМ
26	TM	AL	VC	TNC	RE	TNC	LA
27	AL	AL	VC	TNC	RE	TNC	TNC
28	AL	AL	VC	TNC	RE	TNC	TNC
29	AL	AL	VC	TNC	TNC	TNC	TNC
30	AL	AL	TNC	TNC	TNC	TNC	TNC


CATEGORÍAS DE TRABAJO


MM:	MANEJO DE MANGUI	MANEJO DE MANGUERA								
RE:	REGLEAR	TNC:	TRABAJO NO CONTRIB.							
AL:	ACABADO DE LOSA	TC:	TRABAJO CONTRIB.							
VC:	VIBRADO DE CONC	NP:	NO PRESENTE							
NI:	NIVEL									


ANEXO D: Planos de Obra
"Mejoramiento de las
Principales Calles de la
Junta Vecinal La Marina,
Provincia de Padre abad –
Ucayali"

NOTA BIOGRÁFICA

CARLOS AUGUSTO ORTEGA URDANIVIA

Nacido en Huánuco el 13 de enero de 1992, recibió educación inicial en el I.E.I. N° 108 MARIA MONTESORI, estudios Primarios en I.E.P. CRISTOBAL DE LOSADA Y PUGA, estudios secundarios en el I.E.P. CRISTOBAL DE LOSADA Y PUGA. Estudios universitarios en la UNIVERSIDAD NACIONAL HERMILIO VALDIZÁM, dentro de la E.A.P. DE INGENIERÍA CIVIL de la FACULTAD DE INGENIERÍA CIVIL Y ARQUITECTURA, siendo Egresado de Ingeniería Civil en el año 2014. Realizó sus Prácticas empresa CALYPSO CONTRATISTAS Profesionales en GENERALES E.I.R.L., para recibir luego el GRADO DE BACHILLER EN INGENIERÍA CIVIL en el año 2016. Al término del desarrollo de la presente Tesis, fue sustentada en acto público el 17 de agosto del año 2017 para optar el TPITULO DE INGENIERO CIVIL.